Abstract:Single cell sequencing is a new technology which can sequence and analyze the related omics at the level of single cell. It can not only obtain the genetic information of single cell, but also solve the problem of multicellular heterogeneity. In the past decade, single cell research has developed from cell separation, amplification and sequencing to high-throughput single cell sequencing, and many new and efficient methods and platforms have emerged. The development process of single cell sequencing is reviewed. The advantages, disadvantages and applicability of different methods and commercial platforms are discussed, and the impact of single cell sequencing on biometrology is prospected.
Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing[J]. Nature, 2011, 472(7341): 90-94.
[1]
Kalisky T, Blainey P, Quake S R. Genomic analysis at the single-cell level[J]. Annual Review of Genetics, 2011, 45(1): 431-445.
[5]
Leun A M, Thommen D S, Schumacher T N. CD8+T cell states in human cancer: insights from single-cell analysis[J]. Nature Reviews Cancer, 2020, 20(4): 218-232.
[6]
Brady G, Barbara M, Iscove N N. Representative in vitro cDNA amplification from individual hemopoietic cells and colonies[J]. Methods in Molecular and Cellular Biology, 1990, 2(1): 17-25.
[10]
Hou Y, Song L, Zhu P, et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm[J]. Cell, 2012, 148(5): 873-885.
[11]
Ramskold D, Luo S, Wang Y C, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nature Biotechnology, 2012, 30(8): 777-782.
[16]
Ryu K H, Huang L, Kang H M, et al. Single-Cell RNA sequencing resolves molecular relationships among individual plant cells[J]. Plant physiology, 2019, 179(4): 1444-1456.
[18]
Mcfaline-Figueroa J L, Trapnell C, Cuperus J T . The promise of single-cell genomics in plants[J]. Current Opinion in Plant Biology, 2020, 54: 114-121.
Wen L, Tang F C. Recent progress in single-cell RNA-Seq analysis[J]. Hereditas(Beijing), 2014, 36(11):1069-1076.
[4]
Zaragosi L E, Deprez M, Barbry P, et al. Using single-cell RNA sequencing to unravel cell lineage relationships in the respiratory tract[J]. Biochemical Society Transactions, 2020, 48(1): 327-336.
[14]
Han X, Zhou Z, Fei L, et al. Construction of a human cell landscape at single-cell level[J]. Nature, 2020, 581(7808): 303-309.
[20]
Rota L M, Lazzarino D A, Ziegler A N, et al. Determining mammosphere-forming potential: application of the limiting dilution analysis[J]. Journal of Mammary Gland Biology and Neoplasia, 2012, 17(2): 119-123.
[21]
Reizel Y, Chapal-Ilani N, Adar R, et al. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction[J]. PLoS Genet, 2011, 7(7): e1002192.
[24]
Macosko E, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214.
[26]
Gawad C, Koh W, Quake S R. Single-cell genome sequencing: current state of the science[J]. Nature Reviews Genetics, 2016, 17(3): 175-188.
Stewart B J, Ferdinand J R, Clatworthy M R. Using single-cell technologies to map the human immune system-implications for nephrology[J].Nature Reviews Nephrology, 2020, 16(2): 112-128.
[9]
Paolillo C, Londin E, Fortina P. Single-cell genetics[J]. Clinical Chemistry, 2019, 65(8): 972-985.
[13]
Li X, Li L, Yan J B. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize[J]. Nature Communications, 2015, 6(1): 6648.
[19]
Navin N, Hicks J. Future medical applications of single-cell sequencing in cancer[J]. Genome Medicine, 2011, 3(5): 31.
[29]
Lovett M. The applications of single-cell genomics[J]. Human Molecular Genetics, 2013, 22(1): 22-26.
[2]
Rondini E A, Granneman J G, Biochem J. Single cell approaches to address adipose tissue stromal cell heterogeneity[J]. Biotechnology Journal, 2020, 477(3): 583-600.
[7]
Tang F C, Barbacioru C, Wang Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382.
[12]
Zong C, Lu S, Chapman A R, et al. Genome-Wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 2012, 338(6114): 1622-1626.
[27]
Wang J, Song Y. Single cell sequencing: a distinct new field[J]. Clinical and Translational Medicine, 2017, 6(1): 10.
[37]
Ding J, Xian A, Simmons S K, et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods[J]. Nature Biotechnology. 2020, 38(6):737-746.
[15]
Chen W, Li S, Kulkarni A S, et al. Single cell omics: from assay design to biomedical application[J]. Biotechnology Journal, 2020, 15(1):e1900262.
[17]
Zhang T Q, Xu Z G, Shang G D, et al. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root[J]. Molecular Plant, 2019, 12(5): 648-660.
[22]
Zhang X, Marjani S L, Hu Z, et al. Single-cell sequencing for precise cancer research: progress and prospects[J]. Cancer Research, 2016, 76(6): 1305-1312.
[23]
Lindstrom S, Andersson-Svahn H. Overview of single-cell analyses: microdevices and applications[J]. Lab on A Chip, 2010, 10(24): 3363-3372.
[25]
Klein A M, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5): 1187-1201.
[31]
Kurimoto K, Yabuta Y, Ohinata Y, et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis[J]. Nucleic Acids Research, 2006, 34(5): e42.
[32]
Hashimshony T, Wagner F, Sher N, et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Reports, 2012, 2(3): 666-673.
[33]
Klein C A, Seidl S, Petat-Dutter K, et al. Combined transcriptome and genome analysis of single micrometastatic cells[J]. Nature Biotechnology, 2002, 20(4): 387-392.
[34]
Islam S, Kjallquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Research, 2011, 21(7): 1160-1167.
[35]
Hedlund E, Deng Q. Single-cell RNA sequencing: technical advancements and biological applications[J]. Molecular Aspects of Medicine, 2017, 59: 36-46.
[39]
Liu L, Liu C, Quintero A, et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity[J]. Nature Communications, 2019, 10(1): 470.
[42]
Ji A L, Rubin A J, Thrane K, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma[J]. Cell, 2020, 182(6):1661-1662.
[43]
Maynard K R, Collado-Torres L, Weber L M, et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex[J]. Nature Neuroscience, 2021, 24(3):425-436.
Xu X, Hou Y, Yin X, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor[J]. Cell, 2012, 148(5): 886-895.
[30]
Wang Y, Navin N E. Advances and applications of single-cell sequencing technologies[J]. Molecular Cell, 2015, 58(4): 598-609.
[38]
Slyper M, Porter C, Ashenberg O, et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors[J]. Nature medicine, 2020, 26(5):792-802.
[40]
Cassano J C, Roesslein M, Kaufmann R, et al. A novel approach to increase robustness, precision and high-throughput capacity of single cell gel electrophoresis[J]. ALTEX, 2020, 1(37): 95-109.
[45]
Fawkner-Corbett D, Antanaviciute A, Parikh K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution[J]. Cell, 2021, 184(3):810-826.
[47]
Goolam M, Scialdone A, Graham S J L, et al. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos[J]. Cell, 2016, 71(7): 411-412.
[48]
Xue Z, Huang K, Cai C, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing[J]. Nature, 2013, 500(7464):593-597.
Zhang Y Z, Gao Y, Niu C Y,et al. Status and Prospects on the Standardization of Biological Phenotype and Phenome[J]. Acta Metrologica Sinica, 2022, 43(10): 1382-1388.
[55]
Lu S, Zong C, Fan W, et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing[J]. Science, 2012, 338(6114): 1627-1630.
[57]
Woyke T, Doud F R, Schulz F. The trajectory of microbial single-cell sequencing[J]. Nature Methods, 2017, 14(11): 1045-1054.
[59]
Sheng K, Cao W, Niu Y, et al. Effective detection of variation in single-cell transcriptomes using MATQ-seq[J]. Nat Methods, 2017, 14(3): 267-270.
[62]
Fan X, Zhang X, Wu X, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos[J]. Genome Biology, 2015, 16(1): 148.
[65]
Jaitin D A, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172): 776-779.
[67]
Zheng G X, Terry J M, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nature Communications, 2017, 8: 14049.
[36]
Macaulay I C, Haerty W, Kumar P, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes[J]. Nature Methods, 2015, 12(6): 519-522.
[46]
Wilson P C, Wu H, Kirita Y, et al. The single-cell tranomic landscape of early human diabetic nephropathy[J]. Proc Natl Acad Sci USA, 2019, 116(39): 19619-19625.
[53]
Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing[J]. Nature Reviews Cancer, 2017, 17(9): 557-569.
[63]
Picelli S, Bjorklund A K, Faridani O R, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nature Methods, 2013, 10(11): 1096-1098.
[72]
Goldstein L D, Jasmine Y J, Jude D, et al. Massively parallel nanowell-based single-cell gene expression profiling[J]. BMC Genomics, 2017, 18(1):519.
[73]
Xu Y, Mizuno T, Sridharan A, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis[J]. JCI Insight, 2016, 1(20):e90558
[41]
Srivatsan S R, McFaline-Figueroa J L, Ramani V, et al. Massively multiplex chemical transcriptomics at single-cell resolution[J]. Science, 2020, 367(6473): 45-51.
[44]
Asp M, Giacomello S, Larsson L, et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart[J]. Cell, 2019, 179(7):1647-1660.e19.
[58]
Picelli S, Faridani O R, Bjorklund A K, et al. Full-length RNA-seq from single cells using Smart-seq2[J]. Nature Protocols, 2014, 9(1): 171-181.
[61]
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biology, 2016, 17(1): 77.
Gao C X, Zhang M N, Chen L. The Comparison of Two Single-cell Sequencing Platforms: BD Rhapsody and 10x Genomics Chromium[J]. Current Genomics, 2020, 21(8): 602-609.
[49]
Treutlein B, Brownfield D G, Wu A R, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq[J]. Nature, 2014, 509(7500): 371-375.
[56]
Xue J, Schmidt S V, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity. 2014, 40(2): 274-288.
[66]
Soumillon M, Cacchiarell D, Semrau S, et al. Characterization of directed differentiation by high-throughput single-cell RNA-Seq[J]. bioRxiv, 2014, doi: 10.1101/003236
Wang X, Ouyang Y Y, Wang J,et al. Research on Characterization Method for Library DNA Reference Material for Next Generation Sequencing[J]. Acta Metrologica Sinica, 2020, 41(10): 1308-1312.
[54]
Tsoucas D, Yuan G C. Recent progress in single-cell cancer genomics[J]. Current Opinion in Genetics & Development, 2017,42(1): 22-32.
[60]
Svensson V, Natarajan K N, Ly L H, et al. Power analysis of single-cell RNA-sequencing experiments[J]. Nature methods, 2017, 14(4): 381-387.
[64]
Lukas V, Peter A, Mikae K, et al. Platforms for single-cell collection and analysis[J]. International Journal of Molecular Sciences, 2018, 19(3): 807-827.
[70]
Zhang X, Li T, Liu F, et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems[J]. Molecular Cell, 2019, 73(1): 130-142.
[69]
Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods[J]. Molecular Cell, 2017, 65(4): 631-643.