Abstract:The protective performance of medical diagnostic X-ray protective equipment is usually expressed with lead equivalent.According to IEC 61331-1, the measurement of attenuation performance of protective materials is mainly to study the lead equivalent of pure lead, lead-containing and lead-free materials under the conditions of narrow beam, wide beam and reverse wide beam in the range of 40~150kV X-ray. In order to study the shielding performance of protective materials under different measurement methods furtherly, it is necessary to establish the required X-ray reference radiation qualities and simulate or measure the corresponding energy spectrum.Based on the medium energy X-ray radiation device, by adding additional filter, eight X-ray reference radiations qualities in the range of 40~150kV are established and the maximum relative deviation of the HVL is 2.8%. The corresponding X-ray energy spectra are simulated by EGSnrc Monte Carlo simulation program, and the average energy are obtained. The results are consistent with the standard and the maximum relative deviation of average energy is less than 0.4% with IEC. The result can meet the requirements of lead equivalent measurement for X-ray protection materials.
[1]梁丽, 赵蕊, 李胜, 等. X射线防护服所需铅当量的研究与应用 [J]. 中国安全生产科学技术, 2011, 7 (8): 210-213.
Liang L, Zhao R, Li S, et al. The study and application on the required lead equivalents of protective clothing [J]. Journal of Safety Science and Technology, 2011, 7 (8): 210-213.
[2]韩露,赵瑞,吴金杰, 等. 窄X射线束屏蔽材料铅当量测量研究[J].计量学报, 2021, 42(3): 370-374.
Han L,Zhao R,Wu J J, et al. Research on Lead Equivalent Measurement of Narrow X-ray Beam Shielding Material[J]. Acta Metrologica Sinica, 2021, 42(3): 370-374.
[3]蒋丹枫. 橡塑合金辐射防护材料的制备及优化设计 [D]. 南京: 南京航空航天大学,2017.
[4]杨文锋, 刘颖, 杨林, 等. 核辐射屏蔽材料的研究进展 [J]. 材料导报, 2007, 21 (5): 87-90.
Yang W F, Liu Y, Yang L, et al. Research Progress in Shielding Materials for Nuclear Radiation [J]. Materials review, 2007, 21 (5): 87-90.
[5]Schpf T, Pichler T. Radiation Protection Clothing in X-Ray Diagnostics-Influence of the Different Methods of Measurement on the Lead Equivalent and the Required Mass [J]. Fortschr Rntgenstr, 2016, 188 (8): 768-775.
[6]IEC 61331-1: 2014 Protective devices against diagnostic medical X-radiation—Part1: determination of attenuation properties of materials[S].
[7]DIN 6857-1 Strahlenschutzzubehr bei medizinischer Anwendung von Rntgenstrahlung—Teil 1: Bestimmung der Abschirmeigenschaften von bleifreier oder bleireduzierter Schutzkleidung[S].
[8]Poutanen O, Iso-Koivisto E, Tyljrvi M, et al. X-Ray protective clothing: does DIN 6857-1 allow an objective comparison between lead-free and lead-composite materials[J]. Rofo, 2010, 182 (5): 422-428.
[9]Eder H, Schlattl H, Hoeschen C. IEC 61331-1: A new setup for testing lead free X-ray protective clothing[J]. Physica Medica, 2018, 45: 6-11.
[10]Büermann L. Determination of lead equivalent values according to IEC 61331-1: 2014—Report and short guidelines for testing laboratories[J]. Journal of Instrumentation, 2016, 11 (9): T09002.
[11]Büermann L. A New Method to Measure Shielding Properties of Protective Clothing Materials[J]. IFMBE Proceedings, 2009, 25 (3): 150-153.
[12]Shinichi I, Matsumoto M, Matsuzawa R. Examination of optimal radiation quality in the lead equivalent examination of X-ray protective clothing[J]. Nihon Hoshasen Gijutsu Gakkai Zasshi, 2004, 60 (12): 1682-1687.
[13]林关鑫. 铅当量研究[J]. 原子能科学技术, 1991 (1): 80-83.
Lin G X. The study on lead equivalent[J]. Atomic Energy Science and Technology, 1991 (1): 80-83.
[14]欧向明, 赵士庵, 李明生. 辐射防护材料铅当量随X射线峰值管电压变化的研究[J]. 中国医学装备, 2008, 5 (6): 16-19.
Ou X M, Zhao S A, Li M S. Shielding performance research for protective materials against X-rays peak tube voltage[J]. China Medical Equipment, 2008, 5 (6): 16-19.
[15]杜继星, 张晓敏, 宁静, 等. 医用诊断X射线的衰减与防护研究[J]. 军事医学, 2016, 40 (6): 505-507.
Du J X, Zhang X M, Ning J, et al. Attenuation and protection study of medical diagnostic X-rays[J]. Military Medical Sciences, 2016, 40 (6): 505-507.
[16]吴金杰, 郭彬, 李兵, 等. 介入法测量工业X射线光机管电压的研究[J]. 计量学报, 2015, 36 (5): 550-554.
Wu J J, Guo B, Li B, et al. Research on Tube Potential of Industrial X-rays Generator by Invasive Measurement [J]. Acta Metrologica Sinica, 2015, 36 (5): 550-554.
[17]葛双, 吴金杰, 郭彬, 等. (20~300)kV X射线参考辐射装置的建立[J]. 核电子学与探测技术, 2016, 36 (1): 68-72.
Ge S, Wu J J, Guo B, et al. The Establishment of Reference Radiation Device in the range of (20~300) kV X-rays [J]. Nuclear Electronics & Detection Technology, 2016, 36 (1): 68-72.
[18]张晓乐,黄建微,李德红, 等. 40~125kV脉冲X射线参考辐射场的建立[J]. 计量学报, 2021, 42(12): 1664-1668.
Zhang X L, Huang J W, Li D H, et al. Establishment of Reference Radiation Field for 40~125kV Pulsed X-ray[J]. Acta Metrologica Sinica, 2021, 42(12): 1664-1668.
[19]Kawrakow E. The EGSnrc code system: Monte Carlo simulation of electron and photon transport[R]. National Research Council Canada, 2010.
[20]郭彬, 樊成. 诊断X射线辐射质RQR系列建立方法研究[J]. 计量学报, 2011, 32 (z1): 45-47.
Guo B, Fan C. Investigation of the Diagnostic X-ray RQR Series Establishment[J]. Acta Metrologica Sinica, 2011, 32 (z1): 45-47.