2025年04月10日 星期四 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2022, Vol. 43 Issue (7): 913-919    DOI: 10.3969/j.issn.1000-1158.2022.07.12
  力学计量 本期目录 | 过刊浏览 | 高级检索 |
基于贝叶斯优化与改进LeNet-5的滚动轴承故障诊断
汤亮1,2,凡焱峰1,徐适斐1,蔡凯翼1
1.湖北工业大学 机械工程学院,湖北 武汉 430068
2.湖北省制造业创新方法与应用工程技术研究中心,湖北 武汉 430068
Fault Diagnosis of Rolling Bearing Based on Bayesian Optimization and Improved LeNet-5
TANG Liang1,2,FAN Yan-feng1,XU Shi-fei1,CAI Kai-yi1
1. School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
2. Hubei Engineering Research Center for Manufacturing Innovation Method, Wuhan, Hubei 430068, China
全文: PDF (1282 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 考虑到卷积神经网络在滚动轴承故障诊断中存在网络结构难以确定、训练次数过多、时间过长等问题,设计了一种贝叶斯优化改进LeNet-5算法,以及采用该算法构建的轴承故障诊断模型。采用贝叶斯优化训练过程中学习率等超参数,多种故障轴承的振动信号直接作为改进LeNet-5网络的输入,对池化输出采用批归一化处理和改进池化层激活函数防止过拟合,利用全局平均池化层替代全连接层提高改进LeNet-5网络的泛化能力,用Softmax分类器实现滚动轴承故障的分类。通过轴承数据库开展实验,实验表明,该算法构建的轴承故障诊断模型在训练集上准确率为99.94%,验证集上的准确率为99.89%,测试集准确率也达到99.65%,与一维卷积神经网络和二维卷积神经网络对比分析,基于贝叶斯优化改进LeNet-5算法构建的轴承故障诊断模型在滚动轴承的故障诊断模型具有更高的准确率,更少的训练次数和训练时间。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤亮
凡焱峰
徐适斐
蔡凯翼
关键词 计量学滚动轴承故障诊断改进LeNet-5网络贝叶斯优化深度学习    
Abstract:Considering that the network structure is difficult to determine, too many training times and too long training time exist in rolling bearing fault diagnosis by convolutional neural network (CNN), a Bayesian optimization algorithm for improving LeNet-5 is designed, and a bearing fault diagnosis model constructed by this algorithm is presented.The learning rate and other hyperparameters in the Bayesian optimization training process are adopted, the original vibration signals of various fault bearings are directly used as the input of the improved LeNet-5 network, batch normalization is adopted for the pooled output and the activation function of the improved pool layer is adopted to prevent over-fitting, and the global average pool layer is used to replace the full connection layer to improve the generalization ability of the improved LeNet-5 network, the fault classification of rolling bearing is realized by softmax classifier.The experimental results show the accuracy of bearing fault diagnosis model constructed by this algorithm training set is 99.94%, the accuracy of verification set is 99.89%, and the accuracy of test set is 99.65%, compared with 1D-CNN and 2D-CNN, bearing fault diagnosis model based on Bayesian optimization and improved LeNet-5 algorithm has higher accuracy, less training times and training time in the fault diagnosis model of rolling bearings.
Key wordsmetrology    rolling bearings    fault diagnosis    improved LeNet-5 network    Bayesian optimization    deep learning
收稿日期: 2021-08-18      发布日期: 2022-07-18
PACS:  TB936  
  TB973  
基金资助:国家自然科学基金(61976083)
作者简介: 汤亮(1978-),男,湖北工业大学副教授,博士,主要研究方向为机械创新设计。Email:tangliang@hbut.edu.cn
引用本文:   
汤亮,凡焱峰,徐适斐,蔡凯翼. 基于贝叶斯优化与改进LeNet-5的滚动轴承故障诊断[J]. 计量学报, 2022, 43(7): 913-919.
TANG Liang,FAN Yan-feng,XU Shi-fei,CAI Kai-yi. Fault Diagnosis of Rolling Bearing Based on Bayesian Optimization and Improved LeNet-5. Acta Metrologica Sinica, 2022, 43(7): 913-919.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2022.07.12     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2022/V43/I7/913
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn