Abstract:Based on the calibration and measurement capabilities distribution in fluid flow of the top 10 economics in total number of calibration and measurement capabilities, and according to the key comparisons classification system of the Fluid Flow Working Group (WGFF) of the International Committee for Weights and Measures (CIPM), the principle of flow measurement, flow range, uncertainty are compared and analyzed. In addition, the future research of Chinas calibration and measurement capability in fluid flow is proposed, and it provides a support for the re-evaluation of calibration and measurement capability in fluid flow.
李梦娜, 李春辉. 基于校准与测量能力分布探析我国流量计量研究方向[J]. 计量学报, 2022, 43(7): 885-891.
LI Meng-na,LI Chun-hui. Exploring the Research Direction of Fluid Flow Measurement in China Based on the Distribution of Calibration and Measurement Capabilities. Acta Metrologica Sinica, 2022, 43(7): 885-891.
[1]BIPM. Mutual recognition of national measurement standards and of calibration and measurement certificated issued by national metrology institutes[R]. 1999.
[2]Quinn T. World-wide recognition of National Measurement Standards: ten years of the CIPM MRA [Recalibration][J]. Instrumentation & Measurement Magazine IEEE, 2010, 13(1): 42-46.
[3]国际计量局(BIPM)关键比对数据库(KCDB)[EB]. https://www.bipm.org/kcdb/, 2021-01-15
[4]苏彦勋, 梁国伟, 盛健. 流量计量与测试[M]. 2版. 北京: 中国计量出版社, 2007.
[5]苏彦勋, 杨有涛. 流量检测技术[M]. 北京: 中国质检出版社, 2012.
[6]Batista E, Furtado A, Pereira J, et al. New EMPIR project-Metrology for Drug Delivery[J]. Flow Measurement and Instrumentation, 2020, 72: 101716.
[7]Batista E, Sousa J A, Cardoso S, et al. Experimental testing for metrological traceability and accuracy of liquid microflows and microfluidics[J]. Flow Measurement and Instrumentation, 2020, 71: 101691.
[8]廖旭辉, 陈昱桥, 杨勇, 等. 定体积位移增量法测量医用微小流量技术研究[J]. 计量学报, 2020, 41(8): 937-941.
Liao X H, Chen Y Q, Yang Y, et al. Research on Measurement of Medical Micro Flow Rate Technology Based on Constant Volume Displacement Increment Method[J]. Acta Metrologica Sinica, 2020, 41(8): 937-941.
[9]张翰, 李春辉, 崔骊水, 等. 高压环道气体流量标准装置[J]. 计量学报, 2017, 38(3): 324-327.
Zhang H, Li C H, Cui L S, et al. The Close Loop Standard Facility of High Pressure Gas Flow[J]. Acta Metrologica Sinica, 2017, 38(3): 324-327.
[10]曹培娟, 李春辉, 崔骊水, 等. 高压pVTt法气体流量标准装置不确定度实现及验证[J]. 计量学报, 2017, 38(6): 697 -701.
Cao P J, Li C H, Cui L S, et al. The Verification on the Capability of High Pressure pVTt Standard Facility[J]. Acta Metrologica Sinica, 2017, 38(6) : 697-701.
[11]周立媛, 李春辉, 谢代梁. 微小音速喷嘴临界背压比测试装置[J]. 计量学报, 2020, 41(1): 43-47.
Zhou L Y, Li C H, Xie D L. The Test Facility of the Critical Back-pressure Ratio for Small Sonic Nozzle. Acta Metrologica Sinica, 2020, 41(1): 43-47.
[12]2019年BP世界能源统计年鉴[EB]. https://www.bp.com/zh_cn/china/home/news/reports/statistical-review-2019.html, 2020-01-05.
[13]崔航, 胡鹤鸣, 李丽霞, 等. 基于激光跟踪仪的超声流量计几何参数实测方法[J]. 计量学报, 2020, 41(9): 1082-1088.
Cui H, Hu H M, Li L X, et al. Geometric Parameter Measurement of Ultrasonic Flowmeter Based on Laser Trackery[J]. Acta Metrologica Sinica, 2020, 41(9): 1082-1088.
[14]于陆军, 曹久莹, 马宇明, 等. 横板型稳压罐气液两相流场数值模拟及流量稳定性研究[J]. 计量学报, 2020, 41(6): 729-734.
Yu L J, Cao J Y, Ma Y M, et al. Numerical Simulation on Gas-liquid Two-phase Flow Field in the Horizontal-baffle Type Surge Tank and Study on the Flow Stability. Acta Metrologica Sinica, 2020, 41(6): 729-734.
[15]孟涛, 王池, 邢超. 基于主成分分析的流量装置比对传递标准稳定性研究[J]. 计量学报, 2019, 40(5): 823-828.
Meng T, Wang C, Xing C. Study on Transfer Standard Stability of Flow Facilities Comparison Based on Principal Component Analysis. Acta Metrologica Sinica, 2019, 40(5): 823-828.
[16]崔骊水, 李鹏, 邱丽荣, 等. 微风速标准装置的建立和热线风速仪校准方法的实验研究[J]. 计量学报, 2018, 39(3): 289-293.
Cui L S, Li P, Qiu L R, et al. Experiment Investigation on Calibration of Hot Wire Anemometer Based on Low Air Speed Reference Facility[J]. Acta Metrologica Sinica, 2018, 39(3): 289-293.