Abstract:To eliminate the impact of relative drift between DUT (device under test) and test instruments on thermoreflectance thermography, the image registration algorithm is studied, cooperated with a piezoelectric three axis nano-scale position stage, real time correction of drift is realized. Sub-pixel image registration algorithm is realized by Fourier transform, convolution in frequency domain and sinc function approximation, it can calculate the relative drift in real time; a test setup for thermoreflectance thermography is build, the position of the DUT is adjusted in real time by the three axis nano-scale position stage; the results show that, when the temperature of DUT rises from 20℃ to 50℃, there is an obvious displacement in the horizontal direction of the DUT, and this displacement can be correction by the test setup. A typical GaN HEMTs device is tested, the results are consistent with those measured by foreign testing institutions, and the image registration method is proved to be effective.
[1]蔡涛, 段善旭, 康勇. 半导体器件热特性的光学测量技术及其研究进展[J]. 激光与光电子学进展, 2008, 45(6): 51-58.
Cai T, Duan S X, Kang Y. Progress in optical techniques for measuring thermal properties of semiconductor devices [J]. Laser & Optoelectronics Progress, 2008, 45(6): 51-58.
[2]Farzaneh M, Maize K, Luerben D, et al. CCD-based thermoreflectance microscopy: Principles and applications [J]. Journal of Physics: D, 2009, 42(14): 1-20.
[3]李汝冠, 廖雪阳, 尧彬, 等. GaN 基HEMTs 器件热测试技术与应用进展[J]. 电子元件与材料, 2017, 36(9): 1-9.
Li R G, Liao X Y, Yao B, et al. Progress of technologies and applications of temperature measurements for GaN-based HEMTs [J]. Electronic Components and Materials, 2017, 36(9): 1-9.
[3]韩伟,刘岩,杜蕾,等. 发射率对半导体器件显微红外测温结果的影响[J]. 计量学报, 2021, 42(1): 35-40.
Han W, Liu Y, Du L, et al. Influence of Emissivity of Infrared Thermal Results of Semiconductor Device[J]. Acta Metrologica Sinica, 2021, 42(1): 35-40.
[4]Mayer P M, Lüerssen D, Ram R J, et al. Theoretical and experimental investigation of the resolution and dynamic range of CCD-based thermoreflectance imaging [J]. J Opt Soc Am, 2007, 24(4): 1156-1163.
[5]Burzo M G, Komarov P L, Raad P E. Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method[J]. IEEE Trans Compon Packag Technol, 2005, 28: 637-643.
[6]翟玉卫, 梁法国, 郑世棋, 等. 用热反射测温技术测量GaN HEMT的瞬态温度 [J]. 半导体技术, 2016, 41(1): 43-47.
Zhai Y W, Liang F G, Zheng S Q, et al. Transient Temperature Measurement of GaN HEMT Using Thermoreflectance Technique [J]. Semiconductor technology, 2016, 41(1): 43-47.
[7]翟玉卫, 郑世棋, 刘岩, 等. 热反射测温中基于随机共振的微小信号测量[J]. 计量学报, 2019, 40(4): 618-624.
Zhai Y W, Zheng S Q, Liu Y, et al. Weak Signal Measurement in Thermoreflectance Temperature Testing based on Stochastic Resonance [J]. Acta Metrologica Sinica, 2019, 40(4): 618-624.
[8]Kendig D, Hohensee G, Pek E, et al. Accurate thermoreflectance imaging of nano-features using thermal decay [C]//Proceedings of 2017 16th IEEE ITHERM Conference. Orlando, FL, 2017: 23-29.
[9]Foroosh H, Zerubia J B, Berthod M. Extension of Phase Correlation to Subpixel Registration [J]. IEEE Transactions on Image Processing, 2002, 11(3): 188-200.
[10]Shakouri A, Ziabari A, Kendig D, et al. Stable Thermoreflectance Thermal Imaging Microscopy with Piezoelectric Position Control [C]//32nd SEMI-THERM Symposium. San Jose, CA, 2016: 128-132.
[11]Sarua A, Ji H F, Kuball M, et al. Integrated Micro-Raman/Infrared Thermography Probe for Monitoring of Self-Heating in AlGaN/GaN Transistor Structures [J]. IEEE Trans Electron Devices, 2006, 53(10): 2438-2447.
[12]Prejs A, Wood S, Pengelly R, et al. Thermal analysis and its application to high power GaN HEMT amplifiers [C]//Microwave Symposium Digest, 2009. MTT09. IEEE MTT-S International. Boston, MA, 2009: 917-920.
[13]Maize K, Pavlidis G, Heller E, et al. High resolution and thermal characterization and simulation of power AlGaN/GaN HEMTs using micro-Raman thermography and 800 picosecond transient thermoreflectance imaging [C]//Proceedings of Compound Semiconductor Integrated Circuit Symposium. La Jolla, CA, 2014: 1-8.
[14]Pavlidis G, Kendig D, Yates L A. Thermoreflectance Thermography System for Measuring the Transient Surface Temperature Field of Activated Electronic Devices [C]//Proceedings of 17th IEEE ITHERM Conference. San Diego, CA, 2018: 208-213.
[15]Helou A E, Raad P E, Komarov P. Temperature dependence of the thermoreflectance coefficient of gold by the use of a phase-locked single-point measurement approach[C]//Proceedings of 34th SEMI-THERM Symposium. San Jose, CA, 2018: 161-164.