Measurement of Water Vapor Linear Intensity Based on Cavity Ring-Down Spectroscopy
MA Lu-yao1,2,3,Ma Ruo-meng3,XU Hong1,FENG Xiao-juan2,ZHANG Jin-tao2,3,LIN Hong2,3
1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Division of Thermophysics and Process Measurement, National Institute of Metrology, Beijing 100029,China
3. Zhengzhou Institute of Metrology, Zhengzhou, Henan 450001, China
Abstract:With the rapid development of the semiconductor chip industry, the requirements for electronic gases have gradually increased. Trace moisture in the semiconductor processing environment will seriously affect the yield and reliability of the chip. Cavity ring-down spectroscopy is a trace gas measurement method with high sensitivity and accuracy developed in recent years, and the linear intensity is an important parameter for the measurement of spectroscopy. In order to measure the trace humidity, an optical cavity ring-down spectroscopy system for trace humidity measurement was established. The absorption spectra with the center frequencies at 7171.10491cm-1 and 7177.6565cm-1 were measured. The linear intensity was obtained by HTP (Hartmann-Tran profile) linear fitting. The relative standard uncertainty of the measurement result is better than 1.8%. Compared with HITRAN, HITEMP and GEISA databases, the relative deviation is less than 6%.
马路遥,马若梦,徐鸿,冯晓娟,张金涛,林鸿. 基于光腔衰荡光谱法的水汽线形强度测量[J]. 计量学报, 2022, 43(2): 287-292.
MA Lu-yao,Ma Ruo-meng,XU Hong,FENG Xiao-juan,ZHANG Jin-tao,LIN Hong. Measurement of Water Vapor Linear Intensity Based on Cavity Ring-Down Spectroscopy. Acta Metrologica Sinica, 2022, 43(2): 287-292.
[1]何晖, 包汉波. 我国电子气体发展概况[J]. 杭氧科技, 2017 (4): 1-5.
He H, Bao H B. A survey of the development of electronic gases in China [J]. Hangzhou Oxygen Science and Technology, 2017, (4): 1-5.
[2]余雪松. 我国半导体材料产业发展“步稳蹄急”[J]. 新材料产业, 2019(10): 2-7.
Yu X S. The development of Chinas semiconductor material industry is “steady and urgent” [J]. New Materials Industry, 2019(10): 2-7.
[3]马若梦, 林鸿, 张亮, 等. 基于多次反射直接吸收精确测量二氧化碳浓度的研究[J]. 计量学报,2020, 41(4): 425-429.
Ma R M, Lin H, Zhang L, et al. Measurement of Carbon Dioxide Concentration Based on Multi-pass Absorption Technology[J]. Acta Metrologica Sinica, 2020, 41(4): 425-429.
[4]高艳秋. 电子特气中痕量水分测量方法[J]. 上海计量测试, 2013, 40(5): 28-30.
Gao Y Q. Method for determination of trace moisture in electronic special gas [J]. Shanghai Metrology Test, 2013, 40 (5): 28-30.
[5]Hodges J T, Layer H P, Miller W W, et al. Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy[J]. Review of Scientific Instruments, 2004, 75(4): 849-863.
[6]Truong G W, Douglass K O, Maxwell S E, et al. Frequency-agile, rapid scanning spectroscopy[J]. Nature photonics, 2013, 7(7): 532-534.
[7]Kogelnik H, Li T. Laser beams and resonators[J]. Applied Optics, 1966, 5(10): 1550-1567.
[8]Hodges J T, Lisak D. Frequency-stabilized cavity ring-down spectrometer for high-sensitivity measurements of water vapor concentration[J]. Applied Physics B, 2006, 85(2-3): 375-382.
[9]马路遥,林俊,张亮, 等. 温室气体浓度监测的光腔衰荡光谱研究进展[J]. 计量学报,2022, 43(2): 274-280.
Ma L Y, Lin J, Zhang L, et al. Review on the Cavity Ring-down Spectroscopy for Greenhouse Gas Monitoring[J]. Acta Metrologica Sinica, 2022, 43(2): 274-280.
[10]潘金明, 林鸿, 冯晓娟, 等. CO的第二泛频(3←0)跃迁谱线线形强度测量研究[J]. 计量学报, 2020, 41(12): 1565-1569.
Pan J M, Lin H, Feng X J, et al. Investigation on the Line Intensity Measurement of the Second Overtone (3←0) Band of CO[J]. Acta Metrologica Sinica, 2020, 41(12): 1565-1569.
[11]赵欣月, 林鸿, 杨雷, 等. 1.6微米附近氮气展宽的一氧化碳分子线形的研究[J]. 计量学报, 2017, 38(1): 13-18.
Zhao X Y, Lin H, Yang L, et al. Inverstigation on line shape for N2-broadened CO near 1.6μm[J]. Acta Metrologica Sinica, 2017, 38(1): 13-18.
[12]李超, 陈华才, 林弋戈, 等. 应用于边带调制PDH激光稳频的信号源设计[J]. 计量学报, 2018, 39(3): 401-404.
Li C, Chen H C, Lin Y G, et al. Design of Signal Generator Applied on Sideband Modulation Pound-Drever-Hall Laser Frequency Stabilization[J]. Acta Metrologica Sinica, 2018, 39(3): 401-404.
[13]Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.
[14]Rothman L S, Gordon I E, Barber R J, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2139-2150.
[15]Jacquinet-Husson N, Armante R, Scott N A, et al. The 2015 edition of the GEISA spectroscopic database[J]. Journal of Molecular Spectroscopy, 2016, 327: 31-72.
[16]周鑫, 周泽义. 光腔衰荡光谱法测定气体中微痕量水不确定度评估[J]. 计量学报, 2012, 33(2): 178-180.
Zhou X, Zhou Z Y. The Uncertainty Evaluation of Determining the Moisture in Gases by the Method of Cavity Ring Down Spectroscopy[J]. Acta Metrologica Sinica, 2012, 33(2): 178-180.