Abstract:Design a temperature monitoring system based on fiber Bragg grating (FBG) to realize real-time monitoring of the hot spot temperature of transformer windings. Introduce the principle of fiber grating temperature measurement, and use the Maxwell and Fluent modules in Ansys to simulate the electromagnetic field-fluid field-temperature field of the transformer to obtain specific information of the hot spot, so that the position of the fiber grating sensor can be reasonably placed during actual measurement. Use the FBGA demodulation module to process the detected optical signal and complete the hardware construction. On the computer, the DLL function of the dynamic link library is called through the Labview software to complete the design of the host computer, which can realize the display of temperature and wavelength, and alarm when the temperature exceeds the threshold set by the user. Finally, the hardware part and the software part are connected to complete the construction of the entire temperature measurement platform.The calibration experiment and error analysis experiment are carried out, the fitting relationship between the central wavelength of FBG and temperature is obtained, and the feasibility of the temperature measurement platform is verified.
[1]彭庆军, 梁士斌, 姚鑫. 基于FBG传感的油浸式电力变压器绕组温度场监测研究[J]. 光学技术, 2016, 42(4): 325-328.
Peng Q J, Liang S B, Yao X. Monitoring of oil-immersed power transformer winding temperature field based on FBG sensing[J]. Optical technique, 2016, 42 (4): 325-328.
[2]许静, 刘树鑫. 基于多物理场耦合及温升特性研究的变压器热点温度建模与仿真分析[J]. 计量学报, 2022, 43(2): 242-249.
Xu J, Liu S X. Modeling and Simulation Analysis of Transformer Hot Spot Temperature Based on Multi Physical Field Coupling and Temperature Rise Characteristics[J]. Acta Metrologica Sinica, 2022, 43(2): 242-249.
[3]张波. 基于多物理场耦合的电力变压器动热稳定性研究[D]. 武汉: 华中科技大学, 2018.
[4]司晓龙, 吴林坊, 庄岩, 等. 基于光纤布拉格光栅的准分布式高温监测系统[J]. 激光与光电子学进展, 2021, 58(1): 126-133.
Si X L, Wu L F, Zhuang Y, et al. Quasi-distributed high temperature monitoring system based on fiber Bragg grating[J]. Laser and Optoelectronics Progress, 2021, 58(1): 126-133.
[5]魏晋和, 崔建军, 张福民, 等. 光纤光栅应变传感器校准的环境温度测量系统及其标定方法研究[J]. 计量学报, 2019, 40(6A): 42-46.
Wei J H, Cui J J, Zhang F M, et al. Research on Multi-point Temperature Field Measurement System for Fiber Bragg Grating Measurement Environment[J]. Acta Metrologica Sinica, 2019, 40(6A): 42-44.
[6]Grattan K T V, Sun T. Fiber optical sensor technology[J]. An Overview Sensors and Actuators, 2000, 82(1): 40-61.
[7]王恩, 赵振刚, 曹敏. 基于光纤Bragg光栅的油浸式变压器多点温度监测[J]. 高电压技术, 2017, 43(5): 1543-1549.
Wang E, Zhao Z G, Cao M. Multi-point temperature monitoring of oil-immersed transformer based on Fiber Bragg Grating[J]. High voltage technology, 2017, 43 (5): 1543-1549.
[8]刘弘景, 张丹丹, 李伟, 等. 大型油浸式变压器绕组温度场的有限元分析[J]. 高压电器, 2019, 55(12): 83-89.
Liu H J, Zhang D D, Li W, et al. Finite element analysis of temperature field of large oil-immersed transformer windings[J]. High voltage apparatus, 2019, 55(12): 83-89.
[9]李涛, 孙学武, 杜晓平, 等. 基于有限元的变压器流场及温度场仿真分析[J]. 自动化与仪表, 2020, 35(5): 1-5+10.
Li T, Sun X W, Du X P, et al. Simulation analysis of transformer flow field and temperature field based on finite element[J]. Automation & instrumentation, 2020, 35(5): 1-5+10.
[10]廖才波, 阮江军, 刘超. 油浸式变压器三维电磁-流体-温度场耦合分析方法[J]. 电力自动化设备, 2015, 35(9): 150-155.
Liao C B, Ruan J J, Liu C. Coupling Analysis Method for Three Dimensional Electromagnetic, Fluid and Temperature Field of Oil-immersed Transformer[J]. Power automation equipment, 2015, 35 (9): 150-155.
[11]王丽丽, 高树国, 丁钰, 等. 光纤复合式变压器电磁线的温度检测试验研究[J]. 变压器, 2020, 57(5): 69-72.
Wang L L, Gao S G, Ding Y, et al. Fan Xiaozhou, Li Xinye. Experimental study on temperature detection of magnet wire of optical fiber composite transformer[J]. Transformer, 2020, 57(5): 69-72.
[12]Massaroni C, Caponero M A. Fiber Bragg Grating Measuring System for Simultaneous Monitoring of Temperature and Humidity in Mechanical Ventilation[J]. Sensors, 2017, 17(4): 749.
[13]Konrad M, Kazimierz J, Micha M. Linearly chirped tapered fiber-Bragg-grating-based Fabry-Perot cavity and its application in simultaneous strain and temperature measurement[J]. Optics Letters, 2017, 42(7): 1464.
[14]王伟, 魏菊芳, 王楠. 冷却器运行对电力变压器绕组热点温度影响的仿真研究[J]. 高压电器, 2019, 55(3): 84-90.
Wang W, Wei J F, Wang N. Simulation Study on Influence of Cooler Operation on Winding Hot Spot Temperature of Power Transformer[J]. High voltage electric apparatus, 2019, 55 (3): 84-90.
[15]张立霞. LabVIEW软件应用教程[J]. 电子世界, 2020, (14): 80-81.
Zhang L X. LabVIEW Software Application Tutorial[J]. Electronic World, 2020, (14): 80-81.
[16]姜小舟. 基于光纤Bragg光栅的电力电缆温度在线监测技术的研究[D]. 沈阳: 沈阳工业大学, 2020.