Identification of Two-phase Flow Pattern Based on 1D-CNN-AdaBoost and Electrical Resistance Tomography
ZHANG Li-feng1,XIAO Kai1,HUA Hui-chun2
1.Department of Automation, North China Electric Power University, Baoding, Hebei 071003, China
2. Department of Mathematics and Physics, North China Electric Power University, Baoding, Hebei 071003, China
Abstract:Based on the vertical tube gas-liquid two-phase flow measurement data collected by the electrical resistance tomography (ERT) system, the one-dimensional convolutional neural network (1D-CNN) and AdaBoost (Adaptive Boosting) are combined to construct the 1D-CNN-AdaBoost algorithm, a study on the flow pattern identification of gas-liquid two-phase flow has been carried out. The algorithm uses five 1D-CNNs as weak classifiers, trained on experimental data samples, and combined with AdaBoost to form the final strong classifier. Comparing 1D-CNN-AdaBoost algorithm with BP neural network, support vector machine and decision tree algorithm, the results show that the recognition accuracy of 1D-CNN-AdaBoost algorithm is higher than other algorithms, and the average recognition accuracy can reach 97%.
[1]张立峰, 王化祥. 基于SVM及电容层析成像的两相流流型识别 [J]. 仪器仪表学报, 2009, 30(4):812-816.
Zhang L F, Wang H X. Two-phase flow pattern identification based on SVM and electrical capacitance tomography[J]. Chinese Journal of Scientific Instrument, 2009, 30(4):812-816.
[2]陈露阳, 尹佳雯, 孙志强, 等. 基于EEMD-Hilbert谱的气液两相流钝体绕流流型识别[J]. 仪器仪表学报, 2017, 38(10):2536-2546.
Chen L Y, Yin J W, Sun Z Q, et al. Flow pattern identification of gas-liquid two-phase flow around bluff bodies based on EEMD-Hilbert spectrum [J]. Chinese Journal of Scientific Instrument, 2017, 38(10):2536-2546.
[3]Zhan L, Lin Y L, Tu Q Y, et al. Investigation of gassolids flow hydrodynamics in a cold model of a dual fluidised bed gasifier using electrical capacitance tomography sensors[J]. Particuology, 2020, 51: 193-204.
[4]孙海亮, 李彦龙, 刘昌岭, 等. 电阻层析成像技术及其在水合物开采模拟实验中的应用 [J]. 计量学报, 2019, 40(3):455-461.
Sun H L, Li Y L, Liu C L, et al. Electrical resistance tomography technology and its application in hydrate mining simulation experiment [J]. Acta Metrologica sinica, 2019, 40(3):455-461.
[5]申超群, 卫怀玉, 陈德运. 基于神经网络的ERT系统流型辨识的研究 [J]. 哈尔滨理工大学学报, 2008, 13(6):31-34.
Shen C Q, Wei H Y, Chen D Y. Research on Flow Pattern Identification of ERT System Based on Neural Network[J]. Journal of Harbin University of Science and Technology, 2008, 13(6):31-34.
[6]陈德运, 张华, 朱波, 等. 油水两相流电阻层析成像系统流型的辨识 [J]. 电机与控制学报, 2007, 11(6):639-643.
Chen D Y, Zhang H, Zhu B, et al. Flow pattern iden-tification of oil-water two-phase flow electrical resistance tomography system [J]. Journal of Electrical Engineering and Control, 2007, 11(6): 639-643.
[7]朱波. 基于小波分析和神经网络的ERT系统流型辨识研究[D]. 哈尔滨:哈尔滨理工大学, 2008.
[8]许燕斌, 王化祥, 崔自强. 基于独立成分分析的水平管气液两相流分相信息提取[J]. 化工学报, 2009, 60(12):3012-3018.
Xu Y B, Wang H X, Cui Z Q. Extraction of phase separation information of horizontal pipe gas-liquid two-phase flow based on independent component analysis[J].CIESC Journal, 2009, 60(12):3012-3018.
[9]董健, 柳亦兵, 滕伟, 等. 基于BP_Adaboost算法的风电机组叶片结冰检测[J]. 可再生能源, 2021, 39(5): 632-636.
Dong J, Liu Y B, Teng W, et al. Wind turbine blade icing detection based on BP_Adaboost algorithm[J]. Renewable Energy Resources, 2021, 39 (5): 632-636.
[10]张立峰, 王智, 吴思橙. 基于卷积神经网络与门控循环单元的气液两相流流型识别方法[J]. 计量学报, 2022, 43 (10): 1306-1312.
Zhang L F, Wang Z, Wu Si C. Flow Pattern Recogn-ition of Gas-liquid Two-phase Flow Based on Convolu-tional Neural Network [J]. Acta Metrologica sinica, 2022, 43(10): 1306-1312.
[11]张立峰, 朱炎峰. 基于MO-PLP-ELM及电容层析成像的两相流流型辨识[J]. 计量学报, 2021, 42(3):334-338.
Zhang L F, Zhu Y F. Flow pattern identification of two-phase flow based on MO-PLP-ELM and electrical capacitance tomography [J]. Acta Metrologica sinica, 2021, 42(3):334-338.
[12]仝卫国, 朱赓宏, 顾浩. 基于层析成像的气液两相流相关流量测量方法[J]. 计量学报, 2020, 41(10):1245-1251.
Tong W G, Zhu G H, Gu H. A gas-liquid two-phase flow correlation flow measurement method based on tom-ography [J]. Acta Metrologica Sinica, 2020, 41(10):1245-1251.
[13]许燕斌, 王化祥, 崔自强. 水平管气水两相流分相界面识别[J]. 天津大学学报, 2010, 43(8):743-748.
Xu Y B, Wang H X, Cui Z Q. Identification of phase separation interface of horizontal pipe gas-water two-phase flow[J]. Journal of Tianjin University, 2010, 43(8):743-748.
[14]仝卫国, 庞雪纯, 朱赓宏. 基于卷积神经网络的气液两相流流型识别方法 [J]. 系统仿真学报, 2021, 33(4):883-891.
Tong W G, Pang X C, Zhu G H. Flow pattern identification method of gas-liquid two-phase flow based on convolutional neural network [J]. Journal of System Simulation, 2021, 33(4):883-891.