UWB Indoor Positioning Algorithm Based on Kalman Filter and Particle Filter Fusion
CHENG Xue-cong1,2,LIU Fu-cai1,2,HUANG Ru-nan1,2
1. Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment, Yanshan University, Qinhuangdao, Hebei 066004, China
2.Key Lab of Industrial Computer Control of Heibei Province, Yanshan University, Qinhuangdao, Hebei 066004, China
摘要基于超宽带(ultra-wideband,UWB)室内定位技术得到了广泛的发展,然而,在LOS(line-of-sight)和NLOS(non-line-of-sight)环境下的UWB的测距信息均存在不同程度的误差,因此,提出了一种改进的卡尔曼滤波算法对UWB原始数据进行平滑处理;之后提出卡尔曼滤波(Kalman filters and particle filters,KPF)和粒子滤波融合的算法。通过卡尔曼滤波得到的状态量和误差协方差进行粒子采样,克服了传统粒子滤波进行粒子采样时的运动学模型与实际运动不相符的缺点,大幅减少了粒子退化的现象。经过实验,该算法在LOS和NLOS环境中的定位精度分别提升了20.6%和15.6%。
Abstract:Indoor positioning technology based on ultra-wideband (UWB) has been widely developed.However, the measurement of UWB in LOS (line-of-sight) and NLOS (non-line-of-sight) environments There are different degrees of error in the distance information, so an improved Kalman filter algorithm is proposed to smooth the UWB original data; then a Kalman filter and particle filter (KPF) particle filter and Kalman filter fusion algorithm is proposed.Particle sampling is carried out through the state quantity and error covariance obtained by Kalman filtering, which overcomes the disadvantage that the kinematic model of traditional particle filtering does not match the actual motion, and greatly reduces the phenomenon of particle degradation.After experiments, the positioning accuracy of the algorithm in LOS and NLOS environments is improved by 20.6% and 15.6%, respectively.
[1]Kulmer J. Using DecaWave UWB transceivers for high-accuracy multipath-assisted indoor positioning [C]// IEEE International Conference on Communications. Paris, France, 2017.
[2]王昱洁,王媛,张勇. 基于KFCM-LMC-LSSVM算法的WLAN室内定位方法[J]. 计量学报, 2018, 39(4): 554-558.
Wang Y J,Wang Y,Zhang Y. Indoor Positioning Algorithm for WLAN Based on KFCM-LMC-LSSVM [J].Acta Metrologica Sinica, 2018, 39(4): 554-558.
[3]吴志峰, 吴子岳. 基于GPS/MATLAB的AUV路径优化分析 [J]. 计量学报, 2020, 41(8): 926-931.
Wu Z F, Wu Z Y. AUV path optimization analysis based on GPS/MATLAB [J]. Acta Metrologica Sinica, 2020, 41 (8): 926-931.
[4]Guo X S, Shao S H, Ansari N, et al. Indoor Localization Using Visible Light Via Fusion of Multiple Classifiers [J]. IEEE Photonics Journal, 2017, 9 (6), 1-16.
[5]Khodjaev J, Narzullaev A, Park Y, et al. Performance Improvement of Asynchronous UWB Position Location Algorithm Using Multiple Pulse Transmission[C]//4th Workshop on Positioning, Navigation and Communication. Hannover, Germany, 2007.
[6]Wang W, Huang J. Design and Implementation of Synchronization-free TDOA Localization System Based on UWB [J]. Radio engineering, 2019, 28 (1): 320-330.
[7]聂睿. 一种基于UWB定位的误差抑制TDOA算法研究[D]. 海口:海南大学, 2020.
[8]Ridolfi M, Velde S V D, Steendam H, et al. Analysis of the Scalability of UWB Indoor Localization Solutions for High User Densities [J]. Sensors, 2018, 18 (6):1875.
[9]陆剑锋, 谢胜东. 基于约束总体最小二乘的泰勒级数定位算法[J]. 计算机应用与软件, 2019, 36 (12): 256-260.
Lu J F, Xie S D. Taylor series positioning algorithm based on constrained total least squares[J]. Computer Applications and Software, 2019, 36 (12): 256-260.
[10]谢芝玉, 刘雄飞, 胡志坤. 基于Taylor展开的UWB井下定位算法研究与实现[J]. 计算机工程与应用, 2017, 53 (2): 231-235.
Xie Z Y, Liu X F, Hu Z K. Research and implementation of UWB underground positioning algorithm based on Taylor deployment[J]. Computer Engineering and Applications, 2017, 53 (2): 231-235.
[11]方姝, 倪育德, 刘逸, 等. 基于最小二乘与Taylor级数展开的新型混合定位方法[J]. 计算机工程, 2015, 41 (6): 316-321.
Fang S, Ni Y D, Liu Y, et al. A new hybrid positioning method based on least squares and Taylor series expansion[J]. Computer Engineering, 2015, 41 (6): 316-321.
[12]Dabove P, Pietra V Di, Piras M, et al. Indoor positioning using Ultra-wide band (UWB) technologies: Positioning accuracies and sensors' performances[C]//2018 IEEE/ION Position, Location and Navigation Symposium. Monterey, USA, 2018.
[13]张冉乔, 苏中, 刘宁. UWB人员运动定位的小波阈值去噪方法研究[J]. 现代电子技术, 2020, 43 (17): 34-38. Zhang R Q, Su Z, Liu N. Research on Wavelet Threshold Denoising Method for UWB Human Motion Location [J]. Modern Electronic Technology, 2020, 43 (17): 34-38.
[14]王川阳, 王坚, 宁一鹏, 等. 超宽带定位的降噪方法研究[J]. 测绘科学, 2019, 44 (4): 175-181.
Wang C Y, Wang J, Ning Y P, et al. Research on noise reduction methods for ultra-wideband positioning[J]. Science of Surveying and Mapping, 2019, 44 (4): 175-181.
[15]闫保芳, 毛庆洲. 一种基于卡尔曼滤波的超宽带室内定位算法[J]. 传感器与微系统, 2017, 36 (10): 137-140.
Yan B F, Mao Q Z. An ultra-wideband indoor positioning algorithm based on Kalman filter[J]. Sensors and Microsystems, 2017, 36 (10): 137-140+143.
[16]罗豪龙, 李广云, 欧阳文, 等. 基于自适应卡尔曼滤波的TDOA定位方法[J]. 测绘科学技术学报, 2020, 37 (3): 252-257.
Luo H L, Li G Y, Ouyang W, et al. TDOA positioning method based on adaptive Kalman filter[J]. Journal of Surveying and Mapping Science and Technology, 2020, 37 (3): 252-257.
[17]Liu F. An Adaptive UWB/MEMS-IMU Complementary Kalman Filter for Indoor Location in NLOS Environment[J]. Remote Sensing, 2019, 11 (22): 2628.
[18]Li X, Wang Y, Liu D W. Research on Extended Kalman Filter and Particle Filter Combinational Algorithm in UWB and Foot-Mounted IMU Fusion Positioning[J]. Mobile Information Systems, 2018:1587253 .
[19]何永平, 刘冉, 付文鹏, 等. 非视距环境下基于UWB的室内动态目标定位[J]. 传感器与微系统, 2020, 39 (8): 46-49.
He Y P, Liu R, Fu W P, et al. UWB-based indoor dynamic target positioning in non-line-of-sight environments[J]. Sensors and Microsystems, 2020, 39 (8): 46-49.
[20]张雨婷, 陈璟. 采用EKF与PF的室内融合定位技术[J]. 传感技术学报, 2020, 33 (2): 245-251.
Zhang Y T, Chen J. Indoor fusion positioning technology using EKF and PF[J]. Journal of Sensor Technology, 2020, 33 (2): 245-251.
[21]Li X, Wang Y. Research on the UWB/IMU fusion positioning of mobile vehicle based on motion constraints[J]. Acta Geodaetica et Geophysica, 2020,55(1):237-255.
[22]Barral V, Escudero C J. NLOS Identification and Mitigation Using Low-Cost UWB Devices[J]. Sensors, 2019, 19(16): 3464.