Abstract:The code for evaluating the measurement uncertainty by adaptive Monte Carlo method was completed by compiling the calculation program in Python, and then the measurement uncertainty of benzo[a]pyrene content in fertilizer by gas chromatography-mass spectrometry was evaluated.The result showed that the standard uncertainty for the determination of benzo[a]pyrene in fertilizers by gas chromatography mass spectrometer is 0.0179mg/kg. The application of the adaptive MC method in the measurement uncertainty evaluation of the determination of fertilizer composition content is explored. The results show that this method has the advantages of wide applicability, intuitive calculation process and reliable calculation results.
王高俊, 吴昊, 章明洪. 自适应蒙特卡洛法评定肥料中苯并[a]芘含量的测量不确定度[J]. 计量学报, 2022, 43(1): 127-132.
WANG Gao-jun, WU Hao, ZHANG Ming-hong. Evaluation of Measurement Uncertainty in the Determination of Benzo[a]pyrene in Fertilizer by Adaptive Monte Carlo Method. Acta Metrologica Sinica, 2022, 43(1): 127-132.
[1] 段小丽, 魏复盛. 苯并(a)芘的环境污染、健康危害及研究热点问题[J]. 世界科技研究与发展, 2002,24(1): 15-21.
Duan X L, Wei F S. The Environmental Pollution Caused by Benzo (a) Pyrene, Its Harm to Health and the Research Focuses on It [J]. World sic-tech R & D, 2002, 24(1): 15-21.
[2] 王伟, 宋明顺, 陈意华, 等. 蒙特卡罗方法在复杂模型测量不确定度评定中的应用[J]. 仪器仪表学报, 2008, 29(7): 1446-1449.
Wang W, Song M S, Chen Y H, et al. Application of Monte-Carlo method in measurement uncertainty evaluation of complicated model[J]. Chinese Journal of Scientific Instrument, 2008, 29(7): 1446-1449.
[3] ISO/IEC GUIDE 98-3:2008 Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) [S].
[4] JJF 1059. 2—2018 用蒙特卡洛法评定测量不确定度[S].
[5] 尚俊峰, 赵凤霞, 张琳娜. 蒙特卡洛方法在GPS不确定度评定中的应用[J]. 机械设计与制造, 2011,(9): 73-75.
Shang X F, Zhao F X, Zhang L N. Application of Monte Carlo Method in Evaluation of GPS Uncertainty[J]. Machinery Design & Manufacture, 2011,(9): 73-75.
[6] 詹惠琴, 习友宝, 古天祥. 基于数值仿真法的虚拟仪器不确定度评估研究[J]. 仪器仪表学报, 2005, 26(10): 1011-1014.
Zhan H Q, Xi Y B, Gu T X. An Approach to Estimate the Uncertainty in Virtual Instruments Based on the Method of Numerical Simulation [J]. Chinese Journal of Scientific Instrument, 2005, 26(10): 1011-1014.
[7] 黄连木. 基于蒙特卡洛法的燃油加油机示值误差测量不确定度评定[J]. 轻工标准与质量, 2014,(4): 49-51.
Huang L M. Evaluation of Uncertainty in Measurement of Indication Error of Fuel Dispenser based on Monte Carlo Method [J]. Standard and Quality of Light Industry, 2014,(4): 49-51.
[8] 赵琳, 李锁印, 许晓青, 等. 基于蒙特卡洛法的常用玻璃量器容量测量结果不确定度评定[J]. 计测技术, 2013, 33(s1): 187-189.
Zhao L, Li S Y, Xu X Q, et al. Evaluation of the Uncertainty of the Capacity Measurement Results of the Common Glass Measuring Instruments based on Monte Carlo Method [J]. Metrology Measurement Technology, 2013, 33(s1): 187-189.
[9] 韩志国, 李锁印, 冯亚男,等. 基于蒙特卡洛法的砝码校准不确定度评定[J]. 计测技术, 2013, 33(s1): 177-180.
Han Z G, Li S Y, Feng Y N, et al. Evaluation of Uncertainty of Weight Calibration based on Monte Carlo Method [J]. Metrology Measurement Technology, 2013, 33(s1): 177-180.
[10] 赵显桥, 吴胜杰, 何国亮, 等. 蒙特卡罗法在锅炉热效率测量不确定度评定中的应用[J]. 热力发电, 2011,(1): 25-28.
Zhao X Q, Wu S J, He G L, et al. Application of Monte Carlo Method in Uncertainty Evaluation for Measurement of Boilers Thermal Efficiency[J]. Thermal Power Generation, 2011,(1): 25-28.
[11] 张洪俊. 基于蒙特卡罗法的K型热电偶测量不确定度评定[J]. 工业计量, 2014,(4): 60-62.
Zhang H J. Evaluation of Measurement Uncertainty of K-type Thermocouple based on Monte Carlo Method [J]. Industrial Measurement, 2014,(4): 60-62.
[12] 陈怀艳, 曹芸, 韩洁. 基于蒙特卡罗法的测量不确定度评定[J]. 电子测量与仪器学报, 2011, 25(4): 301-308.
Chen H Y, Cao Y, Han J. Evaluation of Uncertainty in Measurement based on a Monte Carlo Method [J]. Journal of Electronic Measurement and Instrumentation, 2011, 25(4): 301-308.
[13] 孟令川, 朱泽熙. 圆柱螺纹塞规中径不确定度评估的蒙特卡洛模拟[J]. 计量学报, 2017, 38(S1): 101-106.
Meng L C, Zhu Z X. Uncertainty Estimate on Effective Diameter of Thread Plug Gauge by Monte Carlo Simulation [J]. Acta Metrologica Sinica, 2017, 38(S1): 101-106.
[14] 郭小喜, 王静慧, 刘红艳, 等. 用MCM法评定液相色谱测定化妆品中对苯二胺测量结果的不确定度[J]. 计量技术, 2015, (11): 28-31.
Guo X X, Wang J H, Liu H Y, et al. Evaluation of the Uncertainty of the Determination of P-phenylenediamine in Cosmetics by Liquid Chromatography base on Monte Carlo Method [J]. Measurement Technique, 2015, (11): 28-31.
[15] 宋君, 刘月悦, 王东, 等. 用蒙特卡洛方法评定转基因玉米59122的测量不确定度[J]. 江苏农业科学, 2018, 46(17): 247-251.
Song J, Liu Y Y, Wang D, et al. Measurement Uncertainty Assessment of Genetically Modified Maize 59122 by Monte Carlo Method [J]. Jiangsu Agricultural Sciences, 2018, 46(17): 247-251.
[16] Sega M , Pennecchi F , Rinaldi S , et al. Uncertainty evaluation for the quantification of low masses of benzo[a]pyrene: Comparison between the Law of Propagation of Uncertainty and the Monte Carlo method[J]. Analytica Chimica Acta, 2016, 920: 10-17.
[17] 陈凌峰. 标准不确定度A类评定中极差法的深入讨论[J]. 计量学报, 2019, 40(2): 347-352.
Chen L F. The further discussion of the range method in the type A evaluation of standard uncertainty[J]. Acta Metrologica Sinica, 2019, 40(2): 347-352.
[18] 江文松, 王中宇, 罗哉, 等. 基于蒙特卡罗法的冲击力溯源系统不确定度评定[J]. 计量学报, 2020, 41 (4): 448-455.
Jiang W S, Wang Z Y, Luo Z, et al. Uncertainty Evaluation on the Traceable Measurement System of the Impact Force Based on a Monte Carlo Method[J]. Acta Metrologica Sinica, 2020, 41 (4): 448-455.
[19] 程银宝, 陈晓怀,王中宇, 等. CMM形状测量任务的不确定度分析与评定[J]. 计量学报, 2020, 41(2): 134-138.
Cheng Y B, Chen X H, Wang Z Y, et al. Uncertainty Analysis and Evaluation of Form Measurement Task for CMM[J]. Acta Metrologica Sinica, 2020, 41(2): 134-138.