Abstract:The importance of SI “second” and the role of “coordinate time” in the unification of space-time and other physical quantities are discussed. The relationship between “proper time” and “coordinate time” and the influence of the gravitational field on the “proper time” are illustrated by taking the Schwarzschild field as an example. It is believed that the uncertainty of time unit determines the ones of other physical units. Only the “coordinate time” has a global scope of application, and physical quantities related to large-scale space-time must be and only be characterized in coordinate quantities. The SI “second” is the unit of “proper time”, which is a local physical quantity. To use quantum benchmarks to unify the physical quantities in a large-scale space, it is necessary to further clarify the relationship between “coordinate time” and SI “second”.
[1] 泰瑞·奎恩. 从实物到原子[M]. 张玉宽,等译. 北京: 中国质检出版社, 2015.
[2] BIPM. The International System of Units(SI) [EB/OL]. https: //www.bipm.org/en/measurement-units/, 2021-08-15.
[3] 马爱文, 曲兴华. SI基本单位量子化重新定义及其意义[J]. 计量学报, 2020, 41(2): 129-133.
Ma A W, Qu X H. The Quantized Redefinition of the SI and its Signification [J]. Acta Metrologica Sinica, 2020, 41(2): 129-133.
[4] 刘民, 孙毅. 国际单位制的基本常数综述[J]. 电子测量与仪器学报, 2021, 35(1): 1-9.
Liu M, Sun Y. Review of elementary constants in international system of units[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1): 1-9.
[5] 宋明顺, 方兴华, 马爱文, 等. 论新国际单位制(SI)的“秒制”特征及其未来发展[J]. 计量学报, 2019, 40(4): 541-548.
Song M S, Fang X H, Ma A W, et al. The Characteristics of the New SI Base on “second system” and its Future Development [J]. Acta Metrologica Sinica, 2019, 40(4): 541-548.
[6] Cacciapuoti L, Armano M, Much R, et al. Testing gravity with cold-atom clocks in space [J]. Eur Phys, 2020, 74: 164.
[7] Panfilo G, Petit G, Harmegnies A. A first step towards the introduction of redundant time links for the generation of UTC: the calculation of the uncertainties of [UTC-UTC(k)][J]. Metrologia, 2020, 576: 065011.
[8] Roberts B M, Delva P, Al-Masoudi A, et al. Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks[J]. New Journal of Physics, 2020, 22: 093010.
[9] 赵峥. 对时间的认识与探索[J]. 物理教学, 2014, 36(4): 2-10.
[10] 赵峥. 爱因斯坦与狭义相对论的诞生[J]. 大学物理, 2015, 34(8): 4-8.
[11] 韩春好. 时空测量原理[M].北京: 科学出版社, 2017.
[12] 张元仲. 爱因斯坦建立狭义相对论的关键一步——同时性定义[J]. 物理与工程, 2015, 25 (3): 3-8. Zhang Y Z. A Key Step in the Development of the Special Relativity by Einstein——Definition of Simultaneity[J]. Physics and Engineering, 2015, 25 (3): 3-8.
[13] 刘民, 帅平, 刘志宏, 等. 空间计量与脉冲星导航[J]. 宇航计测技术, 2019, 391: 5-11.
Liu M, Shuai P, Liu Z H, et al. Space Metrology and Pulsars Navigation[J]. Journal of Astronautic Metrology and Measurement, 2019, 391: 5-11.
[14] 赵铭. 天体测量学家面前的相对论问题[J]. 天文学进展, 1990 (3): 236-243.
Zhao M. Relativity Effect Astrometrists Face[J]. Progress In Astronomy, 1990 (3): 236-243.
[15] 俞允强. 广义相对论引论[M]. 2版. 北京: 北京大学出版社, 2002.
[16] Soffel M, Klioner S A, Petit G, et al. The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement[J]. Astron J, 2003, 126: 2687-2706.
[17] Petit G, Luzum B. IERS Conventions (2010) [R]. IERS Technical Note No36, 2010.
[18] Han C H, Liu L, Cai Z W, et al. The spacetime references of BeiDou Navigation Satellite System[J]. Satellite Navigation, 2021, 2:18.
[19] Nelson R A. Relativistic time transfer in the vicinity of the Earth and in the Solar System[J]. Metrologia , 2011, 48: 171-180.
[20] Pan J Y, Xie Y. Relativistic transformation between τ and TCB for Mars missions: Fourier analysis on its accessibility with clock offset[J]. Res Astron Astrophys, 2013, 1311: 1358-1362.
[21] Pan J Y, Xie Y. Relativistic transformation between τ and TCG for Mars missions under IAU Resolutions[J]. Res Astron Astrophys, 2014. 142: 233-240.
[22] Pan J Y, Xie Y. Relativistic algorithm for time transfer in Mars missions under IAU Resolutions: an analytic approach[J]. Res Astron Astrophys, 2015, 152: 281-292.