Abstract:The content of nickel in crude oil was quantitatively analyzed by inductively coupled plasma emission spectrometry (ICP-AES), and the uncertainty analysis method was established. The contribution of uncertainty component was evaluated from four aspects, and its relative standard uncertainties were calculated respectively. Finally, the synthetic standard uncertainty and expanded uncertainty were obtained. Through analysis and calculation, the expanded uncertainty is 0.20 mg/kg (k=2) when the content of nickel in crude oil is 19.64 mg/kg. The results show that the mainly uncertainty influence factor is introduced by standard curve fitting and standard material itself, followed by solution preparation, while the contribution of sample weighing and measurement repeatability is small.
王鹏,赵荣林,凌凤香,王少军. ICP-AES法测定原油中镍含量及不确定度评定[J]. 计量学报, 2021, 42(6): 822-827.
WANG Peng, ZHAO Rong-lin, LING Feng-xiang, WANG Shao-jun. Determination of Nickel Content in Crude Oil by ICP-AES and Evaluation of Uncertainty. Acta Metrologica Sinica, 2021, 42(6): 822-827.
[1] 丘晖饶. ICP-AES测定变压器油中金属元素及其不确定度评估[J]. 润滑油, 2019, 43(1): 49-54.
Qiu H R. Determination of Metallic Elements in Transformer Oil by ICP-AES and Evaluation of Uncertainty[J]. Lubricating Oil, 2019, 43(1): 49-54.
[2] 冯东红, 姚建新, 冯涛. ICP-AES测定原油及重质油品金属含量的方法确认[J]. 石油应用化工, 2017, 36(4): 151-154.
Feng D H, Yao J X, Feng T. Method validation for the determination of metal content in crude oils and residual fuels by inductively coupled plasma (ICP) atomic emission spectrometry[J]. Petrochemical Industry Application, 2017, 36(4): 151-154.
[3] 罗艳托, 朱建华, 张世杰. 金属元素对原油加工的危害及分离研究现状[J]. 青岛科技大学学报, 2003, 24(9): 35-37.
Luo Y T, Zhu J H, Zhang S J. The effects of metals in crude oil on the refinery operations and its separation progress[J]. Journal of Qingdao University of Science and Technology, 2003, 24(9): 35-37.
[4] 姚百胜, 罗保林. FCC催化剂的镍中毒[J]. 工业催化, 1998, (5): 11-17.
Yao B S, Luo B L. Nickel poisoning of FCC catalyst[J]. Industry Catalysis, 1998, (5): 11-17.
[6] 徐海, 于道永, 王宗贤, 等. 镍和钒对石油加工过程的影响及对策[J]. 炼油设计, 2000, 30(11): 1-5.
Xu H, Yu D Y, Wang Z X, et al. Effects of nickel and vanadium on petroleum processing and counter measures[J]. Petroleum Refinery Engineering, 2000, 30(11): 1-5.
[7] 杨丽丽, 焦泽鹏, 李焕勇. ICP-AES测定Cu含量结果的不确定度评定[J]. 光谱实验室, 2013, 30(1): 213-215.
Yang L L, Jiao Z P, Li H Y. Uncertainty evaluation of determination of copper content by ICP-AES[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(1): 213-215.
[8] 李萍, 罗玉兰. 电感耦合等离子体发射光谱法测定汽油机油中硫的不确定度评定[J]. 合成润滑材料, 2013, 40(2): 4-6.
Li P, Luo Y L. Uncertainty estimation of sulfur in gasoline engine oil determined by ICP-AES[J]. Synthetic Lubricants, 2013, 40(2): 4-6.
[9] 谢美梅. 人造板中甲醛释放量的测定及不确定度评估[J]. 计量学报, 2020, 41(2): 269-272.
Xie M M. Determination and Evaluation of the Uncertainty of the Formaldehyde Emission in Wood-based Panel[J]. Acta Metrologica Sinica, 2020, 41(2): 269-272.
[10] 王家兴, 张会成, 高波, 等. 基于CFR辛烷值测量系统的不确定度评定[J]. 计量学报, 2018, 39(4): 583-586.
Wang J X, Zhang H C, Gao B, et al. Uncertainty Evaluation for CFR Octane Number Testing System of Gasoline[J]. Acta Metrologica Sinica, 2018, 39(4): 583-586.
[11] 陈凌峰. 抽样引起的测量不确定度评定[J]. 计量学报, 2020, 41(7): 891-896.
Chen L F. Evaluating the Sampling Contribution to the Measurement Uncertainty[J]. Acta Metrologica Sinica, 2020, 41(7): 891-896.
[12] JJF 1135-2005 化学分析测量不确定度评定[S].
[13] GB/T 37160-2019 重质馏分油、渣油及原油中痕量金属元素的测定电感耦合等离子体发射光谱法[S].