1. Collage of Metrology and Testing Engineering,China Jiliang University,Hangzhou,Zhejiang 310018,China
2. National Institute of Metrology,Beijing 100029,China
Abstract:According to the principle of measuring nano-particle size by dynamic light scattering device, an apparatus of nano-particle size measurement system based on field programmable gate array(FPGA)is developed.Scattering light signalsare transferring in to level signal through photomultiplier tubes(PMT),and an FPGA is developed to realize high-speed pulse collection and autocorrelation function calculation.Double pulse counting is used to achieve high-precision and controllable continuous signal counting.DDR3 is used to achieve asynchronous storage, and then connected with PC ends by using USB communication interaction functions.The home-designed FPGA card can both calculate autocorrelation function inside as well as achieve mass original data storage.200nm polystyrene particles is measured and the effects of different sampling time and delay time parameters on the particle size measurement results are analyzed.Experimental results show that the self-developed FPGA acquisition board measurement repeatability is 1.2%, can achieve accurate signal acquisition and has excellent stability and repeatability.
[1]高思田, 宋小平, 李琪,等. 国家纳米计量标准体系的初步建立 [J]. 计量学报, 2014, 35(z1): 1-5.
Gao S T, Song X P, L Q, et al. The Preliminary Establishment of Nanometer Standard Metrology System in China. Acta Metrologica Sinica, 2014, 35 (z1): 1-5.
[2]Ohno T, Tagawa S, Itoh H, et al. Size effect of TiO2-SiO2 nano-hybrid particle [J]. Materials Chemistry & Physics, 2009, 113 (1): 119-123.
[3]Chithrani B D, Ghazani A A, Chan W C, et al. Determin-ing the size and shape dependence of gold nanoparticle uptake into mammalian cells [J]. Nano Letters, 2006, 6 (4): 662-668.
[4]Sun X, Liu Z, Welshe K, et al. Nano-graphene oxide for cellular imaging and drug delivery [J]. Nano Research, 2008, 1 (3): 203-212.
[5]贾楠, 顾建飞, 苏明旭. 基于超声谱分析的颗粒粒度测量研究 [J]. 计量学报, 2019, 40 (3): 466-471.
Jia N, Gu J F, Su M X. Characterization of Particle Size Distribution Based on Ultrasonic Spectra Analysis. Acta Metrologica Sinica, 2019, 40 (3): 466-471.
[6]王乃宁. 颗粒粒径的光学测量方法[M]. 北京:原子能出版社, 2000.
[7]顾彩香, 李庆柱, 李磊,等. 几种测量纳米粒子粒径方法的比较研究 [J]. 机械设计, 2008, 25 (5): 12-14.
Gu C X, Li Q Z, Li L, et al. Comparative study of several methods for measuring particle size of nanoparticles [J]. Mechanical Design, 2008, 25 (5): 12-14.
[8]顾彩香, 李庆柱, 李磊,等. 动态光散射及电子显微镜纳米颗粒测量方法的比较研究 [J]. 光散射学报, 2015, 27 (1): 54-58.
Gu C X, Li Q Z, Li L, et al. Comparative study of dynamic light scattering and electron microscope nanoparticle measurement methods [J]. Journal of Light Scattering, 2015, 27 (1): 54-58.
[9]尚玉峰, 蒋达娅, 肖井华,等. 动态光散射实验 [J]. 物理实验, 2004, 24 (10): 9-11.
Shang Y F, Jiang D Y, Xiao J H, et al. Dynamic light scattering experiment [J]. Physics Experiment, 2004, 24 (10): 9-11.
[10]王立鹏, 基于FPGA的动态光散射纳米粒度测量方法的研究 [D]. 济南: 齐鲁工业大学, 2014.
[11]Huang L, Sun M, Gao S T, et al. Precise measurement of the apparent hydrodynamic diameter of nanoparticles by using multiple-angle dynamic light scattering apparatus [C]//China nano conference, Beijing, China, 2019.
[12]孙淼, 黄鹭, 高思田,等. 多角度动态光散射法的纳米颗粒精确测量 [J]. 计量学报, 2020, 41 (5): 529-537.
Sun M, Huang L, Gao S T, et al. Multi-angle dynamic light scattering method for accurate measurement of nan-oparticles [J]. Acta Metrologica Sinica, 2020, 41 (5): 529-537.
[13]成艳婷, 多通道时延光子相关器研究 [D]. 淄博: 山东理工大学, 2009.
[14]喻雷寿, 杨冠玲, 何振江,等. 用于动态光散射颗粒测量中的迭代CONTIN算法 [J]. 光电工程, 2006, 33 (8): 64-69.
Yu L S, Yang G L, He Z J, et al. Iterative CONTIN algorithm for dynamic light scattering particle measurement [J]. Opto electronic Engineering, 2006, 33 (8): 64-69.
[15]叶子, 陆祖康. 小粒子动态光散射信号的计算机模拟及分析 [J]. 光学学报, 1996, 16 (6): 755-758.
Ye Z,Lu Z K. Computer simulation and analysis of small particle dynamic light scattering signal [J]. Journal of Optics, 1996, 16 (6): 755-758.
[16]陈栋章, 任中京. 基于动态光散射原理的纳米粒度仪中数字相关器研究与实现 [C]//第十五届科学协会论文集. 贵阳, 2014.
[17]陆文玲. 大动态范围高速光子相关器研究 [D]. 淄博:山东理工大学, 2012.
[18]夏宇闻. Verilog数字系统设计 [M]. 北京: 北京航空航天大学出版社, 2003: 12-15.