1. School of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
2. National Institute of Metrology, Beijing 100029, China
Abstract:To study the influence of different beam-limiting aperture collimators on the measurement results, MCNP5 simulation software was used to establish a high-purity germanium detector model with a collimator, and various parameters of the collimator were used to simulate and analyze the impact of the collimator on the high-purity germanium detector. Measuring the influence of the X-ray energy spectrum to establish the optimal size of the collimator, and provide a certain reference basis for the laboratory to use the high purity germanium detector to measure the X-ray energy spectrum. The transmission equivalent aperture (TEA) collimator index was calculated, the detection efficiency of X-ray measured by HPGe detector was analyzed. The results showed that the collimator with small aperture and thick shield should be selected for the low-energy X-ray energy spectrum measurement with energy less than 80keV, and the collimator with larger aperture should be selected for the medium and high-energy X-ray with energy more than 80keV, so as to avoid the influence of the quality of X-ray energy spectrum due to the generation of small angular scattered rays and lead characteristic lines from the lead collimator.
文玉琴,赵瑞,吴金杰,赖万昌,王二彦. MC模拟高纯锗探测器准直器对X射线能谱测量的影响[J]. 计量学报, 2021, 42(2): 245-249.
WEN Yu-qin,ZHAO Rui,WU Jin-jie,LAI Wan-chang,WANG Er-yan. MC Simulation of the Effect of High Purity Germanium Detector Collimator on X-ray Energy Spectrum Measurement. Acta Metrologica Sinica, 2021, 42(2): 245-249.
[1]罗剑辉, 王奎禄, 黑东炜, 等. 一种测量高强度直流X光机辐射能谱的方法[J]. 核电子学与探测技术, 2010, 30(5): 676-679.
Luo J H, Wang K L, Hei D W, et al. A method for measuring the radiation energy spectrum of high-intensity DC X-ray machines [J]. Nuclear Electronics and Detection Technology, 2010, 30(5): 676-679.
[2]复旦大学,等. 原子核物理实验方法[M]. 北京:原子能出版社, 1981.
[3]凌球. 核辐射探测[M]. 北京:原子能出版社, 1992.
[4]Salgado C M, Conti C C, Becker P H B. Determination of HPGe detector response using MCNP5 for 20~150keV X-rays. [J]. Applied Radiation and Isotopes, 2006, 64(6): 700-705.
[5]王雪华, 廖建新, 汪凤华. 准直器安装位置对接收信号强度的影响[J]. 中国安全防范技术与应用, 2018, (2): 60-64.
Wang X H, Liao J X, Wang F H. The influence of the installation position of the collimator on the received signal strength [J]. China Security Technology and Application, 2018, (2): 60-64.
[6]周宦银, 谢艳辉, 胡洁微, 等. 基于能谱测量的γ辐射屏蔽实验研究[J]. 计量学报, 2016, 37(z1): 138-140.
Zhou H Y, Xie Y H, Hu J W, et al. Experimental study of gamma radiation shielding based on energy spectrum measurement[J]. Acta Metrology Sinica, 2016, 37(z1): 138-140.
[7]姚馨博, 吴金杰, 王玉龙, 等. CdTe探测器能量刻度与探测效率的模拟计算[J]. 计量学报, 2017, 38(3): 372-375.
Yao X B, Wu J J, Wang Y L, et al. The simulation calculation of CdTe detector energy calibration and detection efficiency[J]. Acta Metrology Sinica, 2017, 38(3): 372-375.
[8]李德红,黄建微,沙比哈·吐尔逊, 等. g因子的蒙特卡罗模拟计算[J]. 计量学报,2019, 40(5): 920-923.
Li D H, Huang J W, Shabiha T X, et al. Monte Carlo Simulation Method for g Factor[J]. Acta Metrology Sinica, 2019, 40(5): 920-923.
[9]郝艳梅,黄建微,李德红, 等. 球形石墨空腔电离室壁修正因子模拟计算[J]. 计量学报,2019, 40(3): 522-525.
Hao Y M, Huang J W, Li D H, et al. Monte-Carlo Simulation about Wall Correction Factor for the Spherical Graphite Cavity Chamber[J]. Acta Metrology Sinica, 2019, 40(3): 522-525.
[10]王俊阳. 低本底高纯锗探测器探测效率及其屏蔽系统的GEANT4模拟[D]. 新乡: 河南师范大学, 2011.
[11]梁勇飞, 吴丽萍, 白立新, 等. 基于用MCNP程序模拟的HPGe γ谱仪的屏蔽[J]. 核电子学与探测技术, 2003, 23(2): 182-184, 186.
Liang Y F, Wu L P, Bai L X, et al. Shielding of HPGe gamma spectrometer based on MCNP program simulation[J]. Nuclear Electronics and Detection Technology, 2003, 23(2): 182-184, 186.
[12]张建芳. 高纯锗探测器探测效率的MCNP模拟[D]. 长春:吉林大学,2009.
[13]王芝兰. 核电子技术原理[M]. 北京: 原子能出版社, 1989.
[14]肖魏峰. 肺部γ内污染探测效率虚拟刻度技术研究[D]. 成都:成都理工大学, 2014.
[15]Kodera Y, Chan H P, Doi K. Effect of collimators on the measurement of diagnostic x-ray spectra[J]. Physics in Medicine & Biology, 1983, 28(7): 841-52.
[16] NIST. X-Ray Mass Attenuation Coefficients. National Institute of Standards & Technology[EB/OL].(2016-03-13).https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients.
[17]华艳, 朱祚缤, 刘艺琴, 等. 高纯锗探测器的效率刻度[J]. 核电子学与探测技术, 2014, 34(1): 86-88.
Hua Y, Zhu Z B, Liu Y Q, et al. Efficiency calibration of high purity germanium detector[J]. Nuclear Electronics and Detection Technology, 2014, 34(1): 86-88.
[18]张帅, 吴金杰, 吴冲, 等. HPGe探测器能量刻度及探测效率模拟[J]. 核电子学与探测技术, 2016, 36(5): 517-520.
Zhang S, Wu J J, Wu C, et al. HPGe detector energy calibration and detection efficiency simulation[J]. Nuclear Electronics and Detection Technology, 2016, 36(5): 517-520.
[19]陈成, 吴金杰, 周四春, 等. CT技术结合MC模拟探测器效率刻度曲线[J]. 核电子学与探测技术, 2015, 35(5): 490-494.
Chen C, Wu J J, Zhou S C, et al. Efficiency calibration curve of CT technology combined with MC analog detector[J]. Nuclear Electronics & Detection Technology, 2015, 35(5): 490-494.