2025年04月11日 星期五 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2021, Vol. 42 Issue (12): 1649-1656    DOI: 10.3969/j.issn.1000-1158.2021.12.15
  电磁学计量 本期目录 | 过刊浏览 | 高级检索 |
基于小波包变换和随机森林算法的光伏系统故障分类
吴忠强,曹碧莲,侯林成,马博岩,胡晓宇
燕山大学 工业计算机控制工程河北省重点实验室,河北 秦皇岛 066004
A Fault Classification Method of Photovoltaic Systems Based on Wavelet Packet Transform and Random Forest
WU Zhong-qiang,CAO Bi-lian,HOU Lin-cheng,MA Bo-yan,HU Xiao-yu
Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China
全文: PDF (3124 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对光伏系统故障分类问题,提出一种小波包变换和随机森林算法相结合的故障分类方法。采集光伏系统的故障电压数据,利用小波包变换对电压信号进行分解,提取各频带能量作为故障特征,将特征样本送入随机森林算法中进行分类。随机森林算法是结合集成学习理论和随机子空间方法的一种算法,可以对多种故障做出准确分类。使用PSCAD/EMTDC搭建独立光伏发电系统,选取12种故障进行模拟,得到600个故障样本,选取其中360个样本用于训练分类器,240个样本用于测试分类器的分类性能。仿真结果表明:该方法可有效辨别光伏系统的12种故障,分类准确率达到97.92%。与RBF神经网络分类器相比,故障分类准确率提高了4.17%,对进一步实现光伏系统故障诊断研究具有重要意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴忠强
曹碧莲
侯林成
马博岩
胡晓宇
关键词 计量学光伏系统故障分类随机森林算法小波包变换神经网络    
Abstract:Aiming at the problem of photovoltaic system fault classification, a fault classification method that combines wavelet packet transform and random forest algorithm is proposed. The fault voltage data of the photovoltaic system are first collected, then the wavelet packet transform is used to decompose the voltage signal, the energy of each frequency band is extracted as the fault feature, and the feature samples are sent into the random forest algorithm for classification. The random forest algorithm is a algorithm that combines ensemble learning theory and random subspace method, which can accurately classify various faults. The independent photovoltaic power generation system is built by PSCAD/EMTDC, 12 types of faults are selected for simulation, 600 samples of fault feature are obtained, among which 360 samples are used to train the random forest classifier, and 240 samples are used to test the classification performance of the classifier. The simulation results show that this method can effectively identify 12 types of faults in the photovoltaic system, and the classification accuracy rate reaches 97.92%. Compared with the RBF neural network, the fault classification accuracy rate is increased by 4.17%, which have important meaning for the further realization of photovoltaic system fault diagnosis research.
Key wordsmetrology    photovoltaic system    fault classification    random forest algorithm    wavelet packet transform    neural network
收稿日期: 2020-12-28      发布日期: 2021-12-06
PACS:  TB971  
基金资助:河北省自然科学基金(F2020203014)
通讯作者: 曹碧莲(1996-),女,甘肃天水人,燕山大学电气工程学院硕士研究生,主要研究方向为光伏系统最大功率点跟踪及故障诊断等。Email: 2410960425@qq.com     E-mail: mewzq@163.com
作者简介: 吴忠强(1966-),男,上海人,燕山大学教授,主要从事新能源发电系统的状态监测与控制,参数辨识,能量管理等方面的研究。Email: mewzq@163.com
引用本文:   
吴忠强,曹碧莲,侯林成,马博岩,胡晓宇. 基于小波包变换和随机森林算法的光伏系统故障分类[J]. 计量学报, 2021, 42(12): 1649-1656.
WU Zhong-qiang,CAO Bi-lian,HOU Lin-cheng,MA Bo-yan,HU Xiao-yu. A Fault Classification Method of Photovoltaic Systems Based on Wavelet Packet Transform and Random Forest. Acta Metrologica Sinica, 2021, 42(12): 1649-1656.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2021.12.15     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2021/V42/I12/1649
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn