Abstract:Microscratch experiment was carried out on copper with the Rockwell C diamond conical indenter to investigate the effect of normal load on microscratch test of the sample. Results show that as normal load increases, both penetration depth and residual depth increase linearly, and elastic recovery rate decreases linearly; scratch width increases nonlinearly during the initial stage and then rises linearly with the increasing penetration depth. When normal load varies from 0.08 N to 0.11 N, the friction force increases linearly, the friction coefficient tends to keep constant, and the friction mechanism is adhesion friction; when normal load varies from 0.11 N to 17 N, both the friction force and the friction coefficient nonlinearly increase, and the friction mechanism is ploughing friction; when normal load varies from 17 N to 28 N, the friction coefficient tends to keep constant, the friction force increases linearly, and the friction mechanism is micro-cutting.
刘明,严富文,高诚辉. 法向载荷对紫铜的微米划痕测试的影响[J]. 计量学报, 2020, 41(9): 1095-1101.
LIU Ming,YAN Fu-wen,GAO Cheng-hui. Effects of Normal Load on Microscratch Test of Copper. Acta Metrologica Sinica, 2020, 41(9): 1095-1101.
[1]朱光宇, 董翔宇, 高诚辉, 等. 试样倾斜对熔融石英硅三棱锥纳米压痕测试的影响[J]. 计量学报, 2019, 40(2):289-294.
Zhu G Y, Dong X Y, Gao C H, et al. Effects of Sample Tilt on Berkovich Nanoindentation Test of Fused Silica [J]. Acta Metrologica Sinica, 2019, 40(2):289-294.
[2]魏小林, 邓墨杰, 高思田, 等. 纳米力学测量系统的载荷与位移溯源校准方法研究[J]. 计量学报, 2012, 33(4): 289-293.
Wei X L, Deng M J, Gao S T, et al. Study on Traceability and Calibration Method of the load and Displacement of Nanomechanical Measurement System [J]. Acta Metrologica Sinica, 2012, 33(4):289-293.
[3]王新伟, 陶兴付, 李旭, 等. 极浅压入下纳米压痕仪针尖面积函数校准方法的研究[J]. 计量学报, 2017, 38(5):593-597.
Wang X W, Tao X F, Li X, et al. Study on the Calibration Method of the Tip Area Function of the Nanoindenter at Super Low Depth [J]. Acta Metrologica Sinica, 2017, 38(5):593-597.
[4]黎正伟, 陶兴付, 树学峰, 等. 纳米压痕仪的压头面积函数校准方法的比较研究[J]. 计量学报, 2015, 36(4):403-407.
Li Z W, Tao X F, Shu X F, et al. Comparative Study on the Calibration Methods of the lndenter Area Function of the lnstrumented Nanoindentation [J]. Acta Metrologica Sinica, 2015, 36(4):403-407.
[5]李晓兵, 陶兴付, 杨浩, 等. 较浅压入下针尖曲率半径对纳米压入硬度影响研究[J]. 计量学报, 2017, 38(6):713-716.
Li X B, Tao X F, Yang H, et al. Study on Different Curvature Radius Tips on the Nano Indentation Hardness at Super Low Depth [J]. Acta Metrologica Sinica, 2017, 38(6):713-716.
[6]Liu Z, Sun J, Shen W. Study of plowing and friction at the surfaces of plastic deformed metals [J]. Tribolog International, 2002, 35(8):511-522.
[7]Sinha S K, Reddy S U, Gupta M. Scratch hardness and mechanical property correlation for Mg/SiC and Mg/SiC/Ti metal-matrix composites [J]. Tribology International, 2006, 39(2):184-189.
[8]Beckford S, Mathurin L, Chen J, et al. The effects of polydopamine coated Cu nanoparticles on the tribological properties of polydopamine/PTFE coatings [J]. Tribology International, 2016, 103:87-94.
[9]Akono A, Kabir P. Microscopic fracture characterization of gas shale via scratch testing [J]. Mechanics Research Communications, 2016, 78:86-92.
[10]Brostow W, Lobland H, Hnatchuk N, et al. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers [J]. Nanomaterials, 2017, 7(3): 1-12.
[11]Geng Y Q, Yan Y D, He Y, et al. Investigation on friction behavior and processing depth prediction of polymer in nanoscale using AFM probe-based nanoscrat-ching method [J]. Tribology International, 2017, 114:33-41.
[12]Kumar A, Staedler T, Jiang X. Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime [J]. Beilstein journal of nanotechnology, 2013, 4(1):66-71.
[13]Chamani H R, Ayatollahi M R. The effect of Berkovich tip orientations on friction coefficient in nanoscratch testing of metals [J]. Tribology International, 2016, 103:25-36.
[14]Bandyopadhyay P, Dey A, Mandal A K, et al. New observations on scratch deformations of soda lime silica glass [J]. Journal of Non-Crystalline Solids, 2012, 358(16): 1897-1907.
[15]Zhou W B, He Y Y, Lu X C. Scratch deformation mechanism of copper based on acoustic emission [J]. Insigh-Non-Destructive Testing and Condition Monitor-ing, 2016, 58(5):256-263.
[16]Wang H, Premachandran N R, Zou M. Friction Study of a Ni Nanodot-patterned Surface [J]. Tribology Lett-ers, 2007, 28(2):183-189.
[17]张亚锋, 何洪途, 余家欣, 等. 用于ICF的三种典型光学玻璃的AFM纳米划痕行为研究[J]. 摩擦学学报, 2018, 38(3):349-355.
Zhang Y F, He H T, Yu J X, et al. AFM Nanoscratch Behaviors of Three Optical Glasses Used in ICF [J]. Tribology, 2018, 38(3):349-355.
[18]Xu N, Han W Z, Wang Y C, et al. Nanoscratching of copper surface by CeO2 [J]. Acta Materialia, 2017, 124: 343-350.
[19]Gao C H, Liu M. Effects of Normal Load on the Coefficient of Friction by Microscratch Test of Copper with a Spherical Indenter [J]. Tribology Letters, 2019, 67(1):1-12.
[20]Zhang J J, Wei Y J, Sun T, et al. Twin boundary spacing-dependent friction in nanotwinned copper [J]. Physical Review B, 2012, 85: 054109.
[21]Li K J, Ni B Y H, Li J C M. Stick-slip in the scratching of styrene-acrylonitrile copolymer [J]. Journal of Materials Research, 1996, 111(61):1574-1580.
[22]Jiang H, Browning R, Fincher J, et al. Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins [J]. Applied Surface Science, 2008, 254(15):4494-4499.
[23]张泰华, 郇勇, 杨业敏, 等. 氮化钛沉积膜的摩擦性能研究[J]. 摩擦学学报, 2003, 23(5):367-370.
Zhang T H, Huan Y, Yang Y M, et al. Tribological Behavior of Plasma-Arc-Deposited TiN Coating on a Stainless Steel [J]. Tribology, 2003, 23(5):367-370.
[24]Geng Y Q, Yan Y D, Hu Z J, et al. Investigation of the nanoscale elastic recovery of a polymer using an atomic force microscopy-based method [J]. Measurement Science and Technology, 2016, 27: 1-9.
[25]朱荣涛, 章新喜, 周剑秋. 纳晶与粗晶镍片微划痕力学行为与变形机制[J]. 稀有金属材料与工程, 2012, 41(S2):641-645.
Zhu R T, Zhang X X, Zhou J Q. Micro-scratch Mechanical Behavior and Deformation Mechanisms betw-een Coarse-grained and Nanocrystalline Ni Sheets [J]. Rare Metal Materials and Engineering, 2012, 41(S2):641-645.
[26]张华丽, 张飞虎. 基于Nano Indenter的纳米刻划性能试验研究[J]. 机械与电子, 2006, (3):3-5.
Zhang H L, Zhang F H. Study of Nano scratch Resistance by Experiment Based on Nano Indenter [J]. Machinery & Electronics, 2006, (3):3-5.
[27]Lafaye S, Troyon M. On the friction behaviour in nanoscratch testing [J]. Wear, 2006, 261:905-913.
[28]谢祖飞,余家欣,钱林茂.载荷对4种材料摩擦机制转变的影响[J]. 上海交通大学学报, 2009, 43(12):1930-1935.
Xie Z F, Yu J X, Qian L M. Load Effect on the Translation of Friction Mechanism of Four Materials [J]. Journal of Shanghai Jiaotong University, 2009, 43(12): 1930-1935.
[29]Benabdallah H S. Static friction coefficient of some plastics against steel and aluminum under different contact conditions [J]. Tribology International, 2007, 40:64-73.
[30]Mergler Y J, Kampen R J V, Nauta W J. Influence of yield strength and toughness on friction and wear of polycarbonate [J]. Wear, 2005, 258:915-923.
[31]Schwarz U D, Zworner O, Koster P, et al. Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds [J]. Physical Review B, 1997, 56:6987-6996.
[32]杨超, 余丙军, 钱林茂. 凸结构的形成-低载下单晶 硅表面的划痕损伤研究[J]. 摩擦学学报, 2010, 30(1): 92-96.
Yang C, Yu B J, Qian L M. Formation of Hillock-Scratch Damage on Si(100) Surface under Low Load [J]. Tribology, 2010, 30(1):92-96.
[33]刘明,李烁,高诚辉. 利用微米划痕研究TiN涂层的失效机理[J]. 计量学报, 2020, 41(6):696-703.
Liu M, Li S, Gao C H. Study of Failure Mechanism of TiN Coatings by Micro-scratch Testing[J]. Acta Metrologica Sinica, 2020, 41(6):696-703.
[34]Xiao J K, Zhang L, Zhou K C, et al. Microscratch behavior of copper-graphite composites[J]. Tribology International, 2013, 57:38-45.