Echo Frequency Estimation of Surface Acoustic Wave Resonator Based on Phase Information in Frequency Domain
LI Ya-fei1,CHEN Zhi-jun1,2,ZHU Wei-jun3,HUANG Hong-wei1,XIONG Zhi-qiang1
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211106, China
2. Key Laboratory of Non-destructive Testing and Monitoring of High-speed Transport Facilities of Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211106, China
3. CETC Deqing Huaying Electronics Co., Deqing, Zhejiang 313200, China
Abstract:A frequency estimation algorithm based on the phase information in the frequency domain was proposed, which estimated the echo frequency of surface acoustic wave resonator (SAWR)by using the relationship between frequency and phase in the Fourier transform phase spectrum of sinusoidal signal, and the autocorrelation operation was performed for eliminating the influence of the initial phase of echo signal on the estimation results. The algorithm was verified by wireless test system and simulation echo signal. It was shown that the frequency estimation accuracy of the algorithm is not affected by the frequency change of the excitation signal, and has high accuracy and stability in the whole variation range of resonance frequency of SAWR.
李亚飞,陈智军,朱卫俊,黄鸿伟,熊志强. 基于频域相位信息的声表面波谐振器回波频率估计[J]. 计量学报, 2020, 41(7): 848-851.
LI Ya-fei,CHEN Zhi-jun,ZHU Wei-jun,HUANG Hong-wei,XIONG Zhi-qiang. Echo Frequency Estimation of Surface Acoustic Wave Resonator Based on Phase Information in Frequency Domain. Acta Metrologica Sinica, 2020, 41(7): 848-851.
[1]陈赵兴, 陈智军, 李庆亮, 等. 采用双本振源激励的声表面波谐振器无线测量系统[J]. 计量学报, 2018, 39(5): 708-711.
Chen Z X, Chen Z J, Li Q L, et al. The wireless measurement system utilizing double local-oscillator excitation for surface acoustic wave resonators[J]. Acta Metrologica Sinica, 2018, 39(5): 708-711.
[2]Friedt J M, Droit C, Martin G, et al. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement[J]. Review of Scientific Instruments, 2010, 81(1): 014701.
[3]Hamsch M, Hoffmann R, Buff W, et al. An Interrogation Unit for Passive Wireless SAW Sensors Based on Fourier Transform[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(11): 1449-1456.
[4]Nicolae I, Miu D, Viespe C. Fourier analysis of SAW resonance frequency variations for improved detection[J]. Sensors and Actuators A: Physical, 2019, 295(6): 302-307.
[5]任姝. 声表面波扭矩传感器结构设计及信号提取方法研究[D]. 上海:上海交通大学, 2013.
[6]郑芳芳. 表面横波轮胎压力传感器系统的研究[D]. 上海:上海交通大学, 2011.
[7]周新力, 龚岳洲, 孙小东, 等. 一种低复杂度的频偏估计算法[J]. 计算机工程, 2013, 39(3): 128-131, 145.
Zhou X L, Gong Y Z, Sun X D, et al. A low-complexity frequency offset estimation algorithm[J]. Computer Engineering, 2013, 39(3): 128-131, 145.
[8]孟庆萍, 周新力, 田伟. 基于FFT和长时延自相关函数的频偏估计方法[J]. 计算机工程与设计, 2013, 34(3): 799-803.
Meng Q P, Zhou X L, Tian W. Carrier frequency offset estimation algorithm based on FFT and long delay autocorrelation function[J]. Computer Engineering and Design, 2013, 34(3): 799-803.
[9]夏前亮, 陈智军, 张亦居, 等. 无源无线声表面波温度传感系统的阅读器设计[J]. 声学技术, 2012, 31(4): 107-111.
Xia Q L, Chen Z J, Zhang Y J, et al. The reader design of a passive wireless surface acoustic wave temperature sensor system[J]. Technical Acoustics, 2012, 31(4): 107-111.
[10]杨进, 李平, 文玉梅. 声表面波谐振器无源传感信号特性和信号处理方法研究[J]. 电子测量与仪器学报, 2004, 18(2): 1-6,12.
Yang J, Li P, Wen Y M. Characteristics and signal processing techniques of the passive and wireless sensor using a SAW resonator[J]. Journal of Electronic Measurement and Instrument, 2004, 18(2): 1-6, 12.