2025年06月05日 星期四 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2020, Vol. 41 Issue (5): 620-626    DOI: 10.3969/j.issn.1000-1158.2020.05.19
  无线电、时间频率计量 本期目录 | 过刊浏览 | 高级检索 |
基于一维卷积神经网络的房颤智能诊断方法研究
XIE Sheng-long1,2,3,4,ZHANG Wei-min2,LU Yu-jun4,ZHANG Wen-xin2,ZHU Jun-jiang1,REN Guo-ying3
1.中国计量大学 机电工程学院, 浙江 杭州 310018
2.浙江西子重工机械有限公司, 浙江 嘉兴 314423
3.中国计量科学研究院, 北京 100029
4.浙江理工大学 机械与自动控制学院, 浙江 杭州 310018
Research on Intelligent Diagnosis of Atrial Fibrillation Based on One-dimensional Convolution Neural Network
谢胜龙1,2,3,4,张为民2,鲁玉军4,张文欣2,朱俊江1,任国营3
1. School of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Zhejiang Xizi Heavy Machinery Co. Ltd., Jiaxing, Zhejiang 314423, China
3. National Institute of Metrology, Beijing 100029, China
4. Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
全文: PDF (1642 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对“大数据”时代如何利用数据对房颤进行智能、高效的诊断问题,提出了基于一维卷积神经网络的智能诊断方法,以避免传统算法依赖人工特征提取和先验知识的问题。首先,分别构建一维LeNet-5和AlexNet神经网络模型,合理设置网络结构参数;然后,在采集的实验数据基础上针对心电信号的特点进行一系列的数据处理,随机构建训练样本和测试样本;最后,将训练样本分别输入上述2个神经网络模型中训练学习,再将训练好的模型用于房颤的诊断。实验结果表明:一维LeNet-5网络模型存在“过拟合”现象,而一维AlexNet网络模型在避免了上述现象的同时,诊断精度达到了95.34%,较传统方法有了较大提升,为房颤诊断提供了有效的手段。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢胜龙
张为民
鲁玉军
张文欣
朱俊江
任国营
关键词 计量学智能诊断心电信号卷积神经网络深度学习    
Abstract:Aiming at the problem of how to use data to diagnose atrial fibrillation intelligently and efficiently in the era of “big data”, an intelligent fault diagnosis method based on one-dimensional LeNet-5 convolution neural network(CNN) is proposed to avoid the problem that traditional algorithms rely on artificial feature extraction and prior knowledge. Firstly, one-dimensional LeNet-5 and AlexNet neural network models are constructed, and network structure parameters are set reasonably. Then, a series of data processing is carried out according to the characteristics of ECG signals based on the collected experimental data, and training samples and test samples are constructed randomly. Finally, the training samples are input into the above two convolution neural network models for training and learning, and the trained model is applied to the diagnosis of atrial fibrillation. The experimental results show that the one-dimensional LeNet-5 network model has the phenomenon of “over-fitting”, while the one-dimensional AlexNet network model avoids the above phenomena and achieves a diagnostic accuracy of 95.34%. Compared with the traditional methods, the intelligent diagnosis method has been improved accuracy greatly, and it provides effective means for the identification of atrial fibrillation.
Key wordsmetrology    intelligent diagnosis    electrocardiogram signal    convolution neural network    deep learning
收稿日期: 2019-12-20      发布日期: 2020-05-14
PACS:  TB973  
基金资助:浙江省自然科学基金(LQ20E050017);国家重点研发计划项目(2018YFF0212702);国家自然科学基金(61801454);之江国际青年人才基金资助项目(ZJ2019JS006)
通讯作者: 任国营(1979-),男,河南开封人,中国计量科学研究院副研究员,博士,硕士研究生导师,主要研究方向为长度计量、机器人测试方法。Email: rengy@nim.ac.cn     E-mail: rengy@nim.ac.cn
作者简介: 谢胜龙(1988-),男,安徽安庆人,中国计量大学讲师,浙江理工大学博士后,博士,主要研究方向为机电一体化控制、软体机器人与智能故障诊断。Email: xieshenglong68@163.com
引用本文:   
谢胜龙,张为民,鲁玉军,张文欣,朱俊江,任国营. 基于一维卷积神经网络的房颤智能诊断方法研究[J]. 计量学报, 2020, 41(5): 620-626.
XIE Sheng-long,ZHANG Wei-min,LU Yu-jun,ZHANG Wen-xin,ZHU Jun-jiang,REN Guo-ying. Research on Intelligent Diagnosis of Atrial Fibrillation Based on One-dimensional Convolution Neural Network. Acta Metrologica Sinica, 2020, 41(5): 620-626.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2020.05.19     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I5/620
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn