2025年01月14日 星期二 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2020, Vol. 41 Issue (4): 455-460    DOI: 10.3969/j.issn.1000-1158.2020.04.011
  力学计量 本期目录 | 过刊浏览 | 高级检索 |
基于最大幅值变分模态分解和均方根熵的滚动轴承故障诊断
孟宗1, 岳建辉1, 邢婷婷1,2, 李晶1, 殷娜1
1.燕山大学电气工程学院, 河北 秦皇岛 066004
2.唐山工业职业技术学院, 河北 唐山 063000
Rolling Bearing Fault Diagnosis Based on Maximum Amplitude Variational Mode Decomposition and Root Mean Square Entropy
MENG Zong1, YUE Jian-hui1, XING Ting-ting1,2, LI Jing1, YIN Na1
1.Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2.Tangshan Polytechnic College, Tangshan, Hebei 063000, China
全文: PDF (718 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对变分模态分解中模态个数的设定会对分解结果产生重要影响的问题,提出一种求取最优分解层数的方法,该方法以瞬时频率的幅值特性为依据,通过分析变分模态分解过程中,各分量最大幅值之间的关系来确定最佳分解参数;均方根熵可以反映不同振动信号的能量值,以信号均方根熵为故障特征参量,通过优化支持向量机建立故障分类模型,实现故障模式分类。将基于最大幅值变分模态分解和均方根熵的故障诊断方法应用于滚动轴承实测信号中,实验结果表明基于最大幅值变分模态分解和均方根熵的方法能够有效识别滚动轴承运行状态,识别准确率高达98.75%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟宗
岳建辉
邢婷婷
李晶
殷娜
关键词 计量学滚动轴承故障诊断变分模态分解均方根熵支持向量机    
Abstract:The setting of modal number in the variational mode decomposition is very important for the decomposition results, based on this, a method to obtain the optimal decomposition layer number is proposed. The method is based on amplitude characteristics of the instantaneous frequencies and determines the optimal decomposition parameter by analyzing the relationship between the maximum amplitude of each component in the variational mode decomposition process. The root mean square entropy can reflect the energy of different vibration signals and is used as the characteristic parameter of the fault. And a fault classification model is established by optimized support vector machine to realize fault patterns classification. The fault diagnosis method based on maximum amplitude variational mode decomposition and root mean square entropy is applied to the measured signal of rolling bearings. The results show that the method based on maximum amplitude variational mode decomposition and root mean square entropy can identify rolling bearing running state efficiently and realize rolling bearing fault diagnosis. The recognition accuracy of this method is 98.75%.
Key wordsmetrology    rolling bearing    fault diagnosis    variational mode decomposition    root mean square entropy    support vector machine
收稿日期: 2018-07-11     
PACS:  TB936  
  TB973  
基金资助:国家自然科学基金 (51575472); 河北省自然科学基金(E2019203448)
作者简介: 孟宗(1977-), 男, 河北保定人, 燕山大学教授、博士研究生导师。主要从事振动信号分析与处理、旋转机械状态监测与故障诊断方面的的研究。Email: mzysu@ysu.edu.cn
引用本文:   
孟宗, 岳建辉, 邢婷婷, 李晶, 殷娜. 基于最大幅值变分模态分解和均方根熵的滚动轴承故障诊断[J]. 计量学报, 2020, 41(4): 455-460.
MENG Zong, YUE Jian-hui, XING Ting-ting, LI Jing, YIN Na. Rolling Bearing Fault Diagnosis Based on Maximum Amplitude Variational Mode Decomposition and Root Mean Square Entropy. Acta Metrologica Sinica, 2020, 41(4): 455-460.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2020.04.011     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2020/V41/I4/455
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn