Abstract:Focusing on a 36m3 horizontal pVTt standard container, the intake process and homogeneous process of the gas in the container were numerically simulated in constant wall temperature and constant velocity as the inlet boundary condition. A new algorithm for calculating the average temperature in the standard pVTt container was proposed, whose name was mass temperature average. The simulation results showed that in the natural convection process after gas intake, the average mass temperature of the gas in the container slowly decreased with time in parabolic shape and tended to wall temperature, while the average pressure drops sharply and quickly reached uniformity. Through numerical simulation and experimental verification, it was found that the gas mass in the container was linear with lnT.
刘若璇,朱洺征,沈昱明. 恒定壁温pVTt标准容器气体质量数值模拟与实验[J]. 计量学报, 2020, 41(2): 179-184.
LIU Ruo-xuan,ZHU Ming-zheng,SHEN Yu-ming. Numerical Simulation and Experiment of Gas Mass in pVTt Standard Container under Isothermal Boundary Condition. Acta Metrologica Sinica, 2020, 41(2): 179-184.
[1]Johnson A N, Wright J D, Moldover M R, et al Temperature characterization in the collection tank of the NIST 26m3 pVTt gas flow standard[J]. Metrologia, 2003, 40(5): 211.
[2]白瑞琴, 程佳, 李东升, 等. 水浴恒温式pVTt法气体流量标准装置温度场仿真研究[J] . 传感器与微系统, 2011, 30(12): 43-46.
Bai R Q, Cheng J, Li D S, et al. Simulation study on temperature field of gas flow standard device using constant temperature pVTt method in water bath [J]. Sensor and microsystem, 2011, 30(12): 43-46.
[3]Ishibashi M, Morioka T. The renewed airflow standard system in Japan for 5~1000m3/h[J]. Flow measurement and instrumentation, 2006, 17(3): 153-161.
[4]Wright J D, Johnson A N, Moldover M R. Design and uncertainty analysis for a PVTt gas flow standard[J]. Journal of research of the National Institute of Standards and Technology, 2003, 108(1): 21.
[5]Johnson A N, Wright J D, Moldover M R, et al. Temperature characterization in the collection tank of the NIST 26 m3 PVTt gas flow standard[J]. Metrologia, 2003, 40(5): 211.
[6]Johnson A N, Wright J D. Gas Flowmeter Calibrations with the 26 m3 PVTt Standard[R]. NIST Special Publication, 2005, 1046.
[7]杨丽红. 容器放气过程的数值模拟及热力学模型研究[D]. 上海:上海交通大学, 2007.
[8]赵雪宁. 基于FLUENT软件的pVTt法标准容器流场仿真研究[J]. 软件导刊, 2018, 17(2):154-157.
Zhao X N. pVTt standard container flow field simulation based on software FLUENT [J]. Software guide, 2008,17(2):154-157.
[9]曹培娟,李春辉,崔骊水,等. 高压pVTt法气体流量标准装置不确定度实现及验证[J]. 计量学报, 2017, 38(6):697-701.
Cao P J, Li C H, Cui L S, et al. The Verification on the Capability of High Pressure pVTt Standard Facility[J]. Acta Metrologica Sinica, 2017, 38(6):697-701.
[10]赵学瑞, 廖其奠. 粘性流体力学[M]. 北京:机械工业出版社, 1983.
[11]韩珂, 罗冬, 沈昱明. 音速喷嘴下游管路内流场数值模拟及对流出系数的影响[J]. 计量学报, 2016,37(z1):175-179.
Han K, Luo D, Shen Y M. Numerical Simulation for the Downstream Pipeline and Its Influence on the Discharge Coefficient [J]. Acta Metrologica Sinica, 2016, 37(z1):175-179.
[12]刘正刚, 杜广生, 刘丽萍. 动量式气体流量计内部流场特性与测量性能研究[J]. 计量学报, 2019, 40(1):124-129.
Liu Z G, Du G S, Liu L P. Study on Internal Flow Field and Measurement Performance of Momentum Gas Flowmeter[J]. Acta Metrologica Sinica, 2019, 40(01):124-129.