Abstract:The GUM method and the adaptive Monte Carlo method (adaptive MCM method) were used to evaluate the measurement uncertainty of the seawater salinity measuring instrument verification device, and the GUM method was verified by the adaptive MCM method. Four kinds of designs were also designed to verify the impact of the air buoyancy term. The results showed that the measurement uncertainty based on the adaptive MCM method was very close to the GUM method. The GUM method has been verified at each detection point, but the adaptive MCM method was simpler and more accurate, which provided a simple method for establishing military salinity standard; the estimated salinity error caused by the air buoyancy term was ±0.0003, and the uncertainty introduced was small. The reproducibility and environment of the seawater salinity measuring instrument verification device was an important part of the measurement uncertainty evaluation, especially for the measurement uncertainty evaluation of low salinity detection points, which had influence on the traceability of salinity.
[1]王朋朋, 赵士伟, 杨健, 等. 基于重量稀释法的海水盐度测量标准不确定度研究[J]. 计量学报, 2019, 40(5): 924-928.
Wang P P, Zhao S W, Yang J, et al. Uncertainty research of the seawater measurement standard based on weight dilution method[J]. Acta Metrologica Sinica, 2019, 40(5): 924-928.
[2]贾肇基. “重量稀释海水”的误差分析[J]. 海洋技术, 1999, 18(2): 73-78.
Jia Z J, Error Analysis of the Weight Dilute Seawater[J]. OCEAN TECHNOLOGY, 1999, 18(2): 73-78.
[3]索利利, 康莹. 重量稀释法在GUILDLINE电极式盐度计校准中的应用[J]. 计量技术, 2017(2): 42-45.
Suo L L, Kang Y. Application of Gravimetric Dilution Method in calibration of electrode salinometer[J]. metrology technology, 2017(2): 42-45.
[4]贾伟广, 高占科, 田锐. 高精度实验室盐度计测量结果的不确定度分析[J]. 海洋技术, 2007, 26(1): 89-92.
Jia W G, Gao Z K, Tian R. Uncertainty analysis of measurement results of high precision laboratory salinometer[J]. ocean technology, 2007, 26(1): 89-92.
[5]田锐, 李杨眉. 实验室盐度计校准结果的不确定度分析[J]. 海洋技术, 2006, 25(4): 122-124.
Tian R, Li Y M. The Uncertainty Analysis of Calibration for Laborator Slinometer[J]. ocean technology, 2006, 25(4): 122-124.
[6]刘园园, 杨健, 赵希勇, 等. GUM法和MCM法评定测量不确定度对比分析[J]. 计量学报, 2018, 39(1): 135-139.
Liu Y Y, Yang J, Zhao X Y, et al. Comparative Analysis of Uncertainty Measurement Evaluation with GUM and MCM[J]. Acta Metrologica Sinica, 2018, 39(1): 135-139.
[7]韩志, 王健, 罗哉. 质量基准量值传递过程中空气浮力影响的研究[J]. 计量学报, 2018, 39(2): 151-154.
Han Z, Wang J, Luo Z. Study on the Influence of Air Buoyancy for the Dissemination Based on Mass Primary Standard[J]. Acta Metrologica Sinica, 2018, 39(2): 151-154.
[8]凌明祥, 李会敏, 黎启胜, 等. 含相关性的测量不确定度拟蒙特卡罗评定方法[J]. 仪器仪表学报, 2014, 35(6): 1385-1393.
Ling M X, Li H M, Li Q S, et al. Quasi Monte Carlo method for the measurement uncertainty evaluation considering correlation[J]. Chinese Journal of Scientific Instrument, 2014, 35(6): 1385-1393.
[9]杨建. 蒙特卡罗法评定测量不确定度中相关随机变量的MATLAB实现[J]. 计测技术, 2012, 32(4): 51-54.
Yang J. The MATLAB Realization of Correlated Random Variable in Evaluation of Measurement Uncertainty Based on Monte Carlo Method[J]. Metrology and Measurement Technology, 2012, 32(4): 51-54.
[10]牛恒, 牛娜. 自适应蒙特卡洛法在测量不确定度评定中的应用[J]. 宁夏工程技术, 2019, 18(1): 72-85.
Niu H, Niu N. Application of Adaptive Monte-Carlo Method in Uncertinty Measurement[J]. Ningxia Engineering Technology, 2019, 18(1): 72-85.
[11]方兴华, 宋明顺, 顾龙芳, 等. 基于自适应蒙特卡洛方法的测量不确定度评定[J]. 计量学报, 2016, 37(4): 452-456.
Fang X H, Song M S, Gu L F, et al. Application of Adaptive Monte Carlo Method on Measurement Uncertainty Evaluation[J]. Acta Metrologica Sinica, 2016, 37(4): 452-456.
[12]王伟, 宋明顺, 陈意华, 等. 蒙特卡洛方法在复杂模型测量不确定度评定中的应用[J]. 仪器仪表学报, 2008, 29(7): 1446-1449.
Wang W, Song M S, Chen Y H, et al. Application of Monte Carlo Method in Measurement Uncertainty Evaluation of complicated model[J]. Chinese Journal of Scientific Instrument, 2008, 29(7): 1446-1449.
[13]JJF 1059. 2-2012 用蒙特卡洛法评定测量不确定度[S]. 2012.
[14]JJF 1059. 1-2012 测量不确定度评定与表示[S]. 2012.