Abstract:To analyze the advantages and disadvantages of three methods of constant liquid level of the standard metal tank, and determine a new method of constant liquid level of the standard device of first-class metal tank. Based on this method, a standard device of constant level of first-class metal tank is designed, it can automatically and accurately read the liquid level, the automatic control of the value transmission process of the standard device of first-class metal tank was realized. The device can effectively control the temperature of the verification medium and the ambient temperature, and the human impact during the measurement process was reduced. The test shows that: the maximum difference of the reproducibility measurement of constant liquid level scale of the first-class metal tank was 0.04mm, the test standard deviation of the standard device was two thirds lower than that of the traditional standard device.
李宁,向德华,周艳. 恒定标高一等金属量器标准装置的研究[J]. 计量学报, 2020, 41(12A): 135-141.
LI Ning,XIANG De-hua,ZHOU Yan. Research on the Standard Device of First-class Metal Tank by Constant Elevation. Acta Metrologica Sinica, 2020, 41(12A): 135-141.
[1]廉育英. 容量计量技术[M]. 北京: 中国计量出版社, 2006: 92.
[2]JJG 259-2005 标准金属量器检定规程[S]. 2005.
[3]张璋, 邵欣铭. 计量颈倾斜对标准金属量器计量的影响分析[J]. 科技展望, 2016, 26(19): 138+160.
Zhang Z, Shao X M. Analysis of the influence of the inclination of the measuring neck on the measurement of the standard metal tank[J]. Science and Technology, 2016, 26(19): 138+160.
[4]陈文琳, 王顺利, 许德福, 等. 三等金属量器容量检定装置的研究及开发[J]. 工业计量, 2015, 25(1): 26-28.
Chen W L, Wang S L, Xu D F, et al. Research and development of the capacity verification device of the third-class metal tank[J]. Industrial Metrology, 2015, 25(1): 26-28.
[5]曾庆威. 标准金属量器不水平引入的液位偏差补偿方法研究[J]. 计量技术, 2018(3): 54-56.
[6]刘小刚. 标准金属量器液面高度的测量方法[J]. 质量技术监督研究, 2017(3): 8-12.
Liu X G. Measuring method of liquid level height of standard metal tank[J]. Quality and Technical Supervision Research, 2017(3): 8-12.
[7]吕妍, 刘勇. 高精度移动式付油仪表检定装置的设计[J]. 计量技术, 2019(8): 25-26.
[8]张海鹏, 赵不贿, 石建荣, 等. 标准金属量器液位图像识别装置的研制[J]. 计算机测量与控制, 2016, 24(7): 205-207+211.
Zhang H P, Zhao B H, Shi J R, et al. Development of image recognition device for liquid level of standard metal tank[J]. Computer Measurement & Control, 2016, 24(7): 205-207+211.
[9]刘晓伟, 赵翠莲, 汪地. 基于面阵CCD的标准金属量器液位监测系统[J]. 计算机测量与控制, 2006, 14(9): 1138-1140.
Liu X W, Zhao C L, Wang D. Liquid level monitoring system of standard metal tank based on surface array CCD[J]. Computer Measurement & Control, 2016, 14(9): 1138-1140.
[10]尹义海, 屈宏强, 卜占成. 溢流液位可调控的标准金属量器研究[J]. 中国计量, 2015(1): 79-81.
[11]Fei Y W, Yang H W, Tong L P, et al. Study on Measuring Technique for Metal Tanks Oil Temperature and its Level[J]. Advanced Materials Research, 2012, 1538(804): 795-799. DOI: 10.4028/www.scientific.net/AMR. 402. 795.
[12]温冠华, 滕召胜, 林海军, 唐求, 任建. 基于拉格朗日抛物线插值的毛细管粘度仪液位检测方法[J]. 计量学报, 2018, 39(1): 47-51.
Wen G H, Teng Z S, Lin H J, et al. A Liquid-level Detection Method for Capillary Viscometer Based on Lagrange Parabolic Interpolation[J]. Acta Metrologica Sinica, 2018, 39(1): 47-51.
[13]李欣, 雷菊阳. 基于OPC技术的水箱实时监控系统[J]. 自动化仪表, 2018, 39(12): 5-8.
Li X, Lei J Y. Real-time Water tank monitoring system based on OPC technology[J]. Process Automation Instrumentation, 2018, 39(12): 5-8.
[14]廉育英, 刘子勇, 张世文, 等. 国家一等标准金属量器组标准装置的建立[J]. 计量学报, 1993, 14(2): 87-93.
Lian Y Y, Liu Z Y, Zhang S W, et al. The establishment of national first class standard metal gauge group standard device[J]. Acta Metrologica Sinica, 1993(2): 87-93.
[15]Li J H, Tong R S, Cao S S. Analysis of Uncertainty in Standard Metal Tank Volume Verification with Monte Carlo Method[J]. Advanced Materials Research, 2013, 2450(1427): 1974-1978.
[16]王本草. 20L二等标准金属量器校准的不确定度评定[J]. 工业计量, 2015, 25(S2): 119-120.
Wang B C. Evaluation of uncertainty for calibration of 20L second-class standard metal tank[J]. Industrial Metrology, 2015, 25(S2): 119-120.
[17]纪建英. 流量容量计量标准技术报告[M]. 北京: 中国计量出版社, 2009: 125.