Abstract:The sea-air interface observation buoy can collect sea surface meteorological and hydrological data synchronously for a long time and continuously. It is one of the important technical supports for the study of global air-sea interaction. Researchers analyze the problems in the calibration of sea-air buoys, and proposes an in-situ calibration technique for sea-air interface observation buoys. Based on the National Shallow Sea Marine Comprehensive Test Field, it conducts a study on the measurement calibration technology of sea-air interface buoys. The sea trial data shows that the on-site in-situ calibration technology is feasible, the process is controllable, and the results are credible. Both the meteorological and hydrological parameters meet the requirements of 《Specifications for Surface Meteorological Observation》 and 《The Specification for Offshore Observations》, which can meet the accuracy requirements of the land calibration technology. The traceability of the float value provides a new and effective way.
[1]唐厂, 王楠楠, 何改云, 等. 波浪浮标数据处理算法研究 [J]. 计量学报, 2013, 34 (4): 315-319.
Tang C, Wang N N, He G Y, et al. Study on Wave Buoy Data Processing Algorithm [J]. Acta Metrologica Sinica, 2013, 34 (4): 315-319.
[2]贾伟广, 常双, 胡波, 等. 基于北斗多星信号融合解析的浮标现场校准技术研究 [J]. 计量学报, 2017, 38 (2): 153-158.
Jia W G, Chang S, Hu B, et al. The Research on Real-time Calibration Technology of Buoy Based on Analysis the Beidou Satellite Signal Fusion [J]. Acta Metrologica Sinica, 2017, 38 (2): 153-158.
[3]Yu F J, Li J J, Zhao Y, et al. Calibration of backward-in-time model using drifting buoys in the East China Sea [J]. Oceanologia, 2017, 59 (3): 238-247.
[4]于建清. 实验室校准重力加速度式波浪浮标波高与波周期测量值的原理和方法 [J].海洋技术学报, 2016, 35 (6): 31-35.
Yu J Q. Study on the Principle and Application of Calibrating the Wave Height and Period Measurements from the Gravitational Acceleration Wave Buoys in Labor-atory [J]. Journal of Ocean Technology, 2016, 35 (6): 31-35.
[5]卢勇夺, 王朝阳, 王豹, 等. 我国海洋锚系浮标数据异常值检测方法研究——以QF110和QF306为例 [J].海洋预报, 2019, 36 (6): 37-43.
Lu Y D, Wang Z Y, Wang B, et al. Research on outlier detection method for marine anchor buoys in China, using QF110 and QF306 as an example [J]. Marine Forecasts, 2019, 36 (6): 37-43.
[6]Pascal, R W, Y, et al. A Spar Buoy for High-Frequency Wave Measurements and Detection of Wave Breaking in the Open Ocean [J]. Journal of Atmospheric and Oceanic Technology, 2011, 28 (4): 590-605.
[7]DAsaro E A, McNeil C L, et al. Calibration and Stability of Oxygen Sensors on Autonomous Floats [J]. Journal of Atmospheric and Oceanic Technology, 2013, 30 (8): 1896-1906.
[8]GB/T 14914—2006海滨观测规范[S].
[9]GB/T 35237—2017气象观测规范[S].
[10]Griffo G, Piper L, Lay-Ekuakille A, et al. Design of buoy station for marine pollutant detection [J]. Measurement, 2014, 47 : 1024-1029.
[11]李文鹤, 薛宜童, 朱飞, 等. 海洋波浪浮标检定装置的设计与实现 [J].雷达与对抗, 2015, 35 (2): 15-18.
Li W H, Xue Y T, Zhu F, et al. Design and implementation of an ocean wave buoy calibrating device [J]. Radar & ECM, 2015, 35 (2): 15-18.
[12]Cullen D,vChris G. Comparison of Remote-Monitoring Buoys [J]. Sea Technology, 2015, 56 (10): 10-14.
[13]付承涛. 波浪浮标检定装置设计及实现[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[14]董树凯. 重力加速度式波浪浮标检定系统研究[D]. 天津: 河北工业大学, 2013.
[15]贾伟广, 吉建华, 马志刚, 等. 基于数字图像处理的高精度海洋潮位计量检测技术 [J]. 计量学报, 2015, 36 (5): 513-516.
Jia W G, Ji J H, Ma Z G, et al. Hardware Technology of High Accuracy Measurement System for Ocean Tide Based on Image Processing. Acta Metrologica Sinica, 2015, 36 (5): 513-516.
[16]周杭霞, 於可广, 徐行. 海底热流高精度测温仪的校准方法 [J]. 计量学报, 2011, 32 (3): 249-252.
Zhou H X, Yu K G, Xu X. The Calibration Method of the High-precision Thermometer for Seafloor Heat Flow Measurements. Acta Metrologica Sinica, 2011, 32 (3): 249-252.