Abstract:An identification method for the transfer function of the resistance strain data acquisition system is proposed. The detailed technical process is given, including the construction and assignment of the resistance strain step excitation source, the acquisition of the resistance strain step signal waveform, and the constant time delay of the strain amplifier. Measurement estimation, the measurement and the estimation of the constant time delay of the strain amplifier, the step response sequence of the resistance strain data acquisition system is obtained by equivalent sampling method, the timing sequence of the excitation sequence and the response sequence is unified and synthesized, and the transfer function of the resistance strain data acquisition system is performed by the least square method with a special whitening filter. The transfer function identification application in a set of experiments demonstrates the effectiveness and feasibility of the method described. The method can be used for the calibration of the dynamic characteristics of the resistance strain data acquisition system and its transfer function identification.
[1]Galway R D. A comparison of methods for calibration and use of multi-component strain gauge wind tunnel balances[R]. NASA STI/Recon Technical Report N. 1980.
[2]Cappa P, Prete Z D. An experimental analysis of accuracy and precision of a high-speed strain-gage system based on the direct-resistance method[J]. Experimental Mechanics, 1992, 32(1): 78-82.
[3]Lo T C P, Chan P C H. Design and calibration of a 3-D micro-strain gauge for in situ on chip stress measurements[C]//IEEE.IEEE International Conference on Semiconductor Electronics. 1996.
[4]Arefiev A A. Calibration and testing of strain-gauge instruments[J]. Measurement Techniques, 1968, 11(7): 865-866.
[5]赵复真. 电阻应变仪校准器的设计方法及最佳方案[J]. 仪器仪表学报, 1987, 8(1): 10-17.
Zhao F Z. The designing method for resistance strain gage calibrator and its optimization[J]. Chinese journal of scientific instrument, 1987, 8(1): 10-17.
[6]陶宝祺, 王妮. 电阻应变片的应变极限和灵敏系数标定方法[J]. 力学与实践, 1984, 6(3): 30-32.
Tao B Q, Wang N. Strain limit and sensitivity coefficient calibration method for resistance gauge[J]. Mechanics in Engineering, 1984, 6(3): 30-32.
[7]Brewer W G. High temperature dynamic strain gage calibration[C]// Society for Experimental Mechanics, Inc. Hostile Environments & High Temperature Measurements Conference. IN: Annual Hostile Environments and High Temperature Measurements Conference, 3rd, 1986, Proceedings (A87-52492 23-35). Cincinnati, OH, 1986: 10-16.
[8]Lupinskii M M, Vasiliadi G V, Gumenyuk B V, et al. Standard devices for resistance strain gauge testing[J]. Measurement Techniques, 1991, 34(3): 243-246.
[9]Deng Zubin. Theoretical design of calibration beams for strain gauge factor measuring apparatus[J]. Strain, 1998, 34(3): 9.
[10]高炳军, 苏秀苹. 测定电阻应变计灵敏系数的一种方法[J]. 传感器与微系统, 1998, 14(4): 49-51.
Gao B J, Su X P. Method of determining the sensitivity coefficient of the resistance strain gauge[J]. Journal of transducer technology, 1998, 14(4): 49-51.
[11]张国才, 游泳, 黄学君, 等. 基于labview应变片自动校准及测量[J]. 大学物理实验, 2017, 30(2): 101-104.
Zhang G C, You Y, Huang X J, et al. Automatic Calibration and Measurement of Strain Gauge Based on Labview[J]. Physical Experiment of College, 2017, 30(2): 101-104.
[12]Bighashdel A, Zare H, Pourtakdoust S H, et al. An Analytical Approach in Dynamic Calibration of Strain Gauge Balances for Aerodynamic Measurements[J]. IEEE Sensors Journal, 2018, 18(9): 3572-3579.
[13]Nisbet J S, Brennan J N, Tarpley H I. High-Frequency Strain Gauge and Accelerometer Calibration[J]. Acoustical Society of America Journal, 1960, 32(7): 71-75.
[14]Ramm B M. Dynamic bridge standard for strain gauge bridge amplifier calibration[C]// IEEE. Precision Electromagnetic Measurements. 2012.
[15]Zhou Q, Xu K, Yang S. Dynamic modeling and staged compensation of bar-shaped strain gauge balance with changing load[J]. Journal of Electronic Measurement & Instrument, 2012, 26(4): 286-298.
[16]钟金德. 动态电阻应变仪原理、检定及维护[J]. 科技创新与应用, 2014, (3): 77-78.
Zhong J D. Dynamic resistance strain gauge principle, verification and maintenance[J]. Technology Innovation and Application, 2014, (3): 77-78.
[17]梁志国, 沈文. 数据采集系统通道间延迟时间差的精确评价[J]. 数据采集与处理, 1998, 13(2): 183-187.
Liang Z G, Shen W. Using Curve-fit Method to Calibrate Delay of Channels of Data Acquisition Systems[J]. Journal of Data Acquisition & Processing, 1998, 13(2): 183-187.
[18]梁志国. 通道间延迟时间差的测量不确定度[J]. 计量学报, 2005, 26(4): 354-359.
Liang Z G. The Measurement Uncertainty of Delay Between Channels[J]. Acta Metrologica Sinica, 2005, 26(4): 354-359.
[19]梁志国. 正弦波拟合参数的不确定度评定[J]. 计量学报, 2018, 39(6): 888-894.
Liang Z G. The Measurement Uncertainty of Curve-fit Parameters of Sinusoidal[J]. Acta Metrologica Sinica, 2018, 39(6): 888-894.
[20]黄俊钦, 张继志, 苗彤. 一种特殊白化滤波器的广义最小二乘法[J]. 航空学报, 1985, 6(6): 572-577.
Huang J Q, Zhang J Z, Miao T. A generalized least square method with special whitening filter[J]. ACTA Autonautica ET Astronautica Sinica, 1985, 6(6): 572-577.
[21]梁志国, 朱济杰. 用周期倍差法评价数据采集系统的传递函数[J]. 计量学报, 1999, 20(3): 227-233.
Liang Z G, Zhu J J. The Equivalent Sampling Period Method for the Identification and Evaluation the Transfer-function of Data Acquisition Systems[J]. Acta Metrologica Sinica, 1999, 20(3): 227-233.
[22]黄俊钦. 静、动态数学模型的实用建模方法[M]. 北京: 机械工业出版社, 1988: 223.
[23]梁志国, 周艳丽, 沈文. 正弦波拟合法评价数据采集系统通道采集速率[J]. 数据采集与处理, 1997, 12(4): 328-333.
Liang Z G, Zhou Y L, Shen W. Using Sinuous Curve-fitting Method to Evaluate the Rate of Data Acquisition Systems[J]. Journal of Data Acquisition & Processing, 1997, 12(4): 328-333.