An Automatic Nanometre Particle Size Detection Algorithm for Scanning Electron Microscopy
WANG Zhi1,2,LI Qi1,HUANG Lu1,GAO Si-tian1,SUN Miao1,2,DONG Ming-li2
1. National Institute of Metrology, Beijing 100029, China
2.Instrument Science and Optoelectronic Engineering College, Beijing Information Science and Technology University, Beijing 100192, China
Abstract:A new automatic detection method of nano-particle size in scanning electron microscopy (SEM) test is proposed based on mathematical geometry. The method has two different parameters, the ratio of long and short axes and the area of region, which are used to judge whether the particles are clustered or incomplete based on the particle size distribution and shape information in the SEM pictures. And the complete single particles can be get, then use MATLAB to extract the wide edge shape of particles with different size. The pixel value of different particles is obtained by the least square method, and the real value can be calculated with transformation, thus realizing the automatic detection of different particles. The test results of polystyrene nanoparticles were selected to verify the method, which show that the two parameters can accurately and effectively extract single point particles in the case of less incomplete clusters. While the ratio parameter is more accurate if there are more incomplete particles in clusters, and the results of automatic detection are in good agreement with the actual values.
[1]马岚, 李冰, 陈建平, 等. 纳米技术在药物领域中的应用 [J]. 内蒙古医科大学学报, 2018, 40 (5): 536-541.
Ma L, Li B, Chen J P, et al. Application of nano-technology in the field of medicine [J]. Journal of Inner Mongolia Medical University, 2018, 40 (5): 536-541.
[2]Ciappa M, Ilgünsatiroglu E, Filosomi F, et al. Monte Carlo modeling of the extraction of roughness parameters at nanometer scale by Critical Dimension Scanning Electron Microscopy[C]// 44th ESSDERC, Venice, Italy, 2014: 1-25.
[3]陈宁, 果晶晶, 宫惠峰. 纳米颗粒粒度测量方法进展 [J].现代科学仪器, 2012, (2): 160-163.
Chen N, Guo J J, Gong H F. The Research Progress of Methods for Characterizing Nanoparticles [J]. Modern Scientific Instruments, 2012, (2): 160-163.
[4]王书运. 纳米颗粒的测量与表征 [J].山东师范大学学报 (自然科学版), 2005, (2): 45-47.
Wang S Y. Measurement And Characterization of Nano-particles [J].Journal of Shandong Normal University (Natural Science), 2005, (2): 45-47.
[5]凌妍, 钟娇丽, 唐晓山, 等. 扫描电子显微镜的工作原理及应用 [J].山东化工, 2018, 47 (9): 78-79.
Ling Y, Zhong J L, Tang X S, et al. The Principle and Application of Scanning Electron Microscope [J]. Shandong Chemical Industry, 2018, 47 (9): 78-79.
[6]熊丽媛. 扫描电子显微镜在粒度分析中的应用 [J].汽车零部件, 2012, (7): 80-83.
Xiong L Y. Application of Scanning Electron Microscope in the Field of Particle Size Analysis [J].Automobile Parts, 2012, (7): 80-83.
[7]贾楠, 顾建飞, 苏明旭. 基于超声谱分析的颗粒粒度测量研究 [J].计量学报, 2019, 40 (3): 466-471.
Jia N, Gu J F, Su M X. Characterization of Particle Size Distribution Based on Ultrasonic Spectra Analysis [J]. Acta Metrologica Sinica, 2019, 40 (3): 466-471.
[8]张昭, 魏星, 王刚. 颗粒长短轴比对饱和砂土液化影响的离散元分析 [J].路基工程, 2018, (5): 40-44.
Zhang Z, Wei X, Wang G. DEM Study on Effect of Particle Long-short-axes Ratio on Liquefaction of Satur-ated Sand [J]. Subgrade Engineering, 2018, (5): 40-44.
[9]胡晓丽, 钟昊, 李彤. 基于二值图像连通域的甘蔗螟虫识别计数方法 [J].桂林电子科技大学学报, 2018, 38 (3): 210-214.
Hu X L, Zhong H, Li T. Binary image connected domain based sugarcane borer recognition and counting algorithm [J]. Journal of Guilin University of Electronic Technology, 2018, 38 (3): 210-214.
[10]陈桥, 刘东艳, 陈颖军, 等. 粒级-标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比 [J].地球与环境, 2013, 41 (3): 319-325.
Chen Q, Liu D Y, Chen Y J, et al. Comparative Analysis of Grade-standard Deviation Method and Fac-tors Analysis Method for Environmental Sensitive Factor Analysis [J]. Earth and Environment Earth Environ, 2013, 41 (3): 319-325.
[11]陈永鹏, 岳晓斌, 曾孝云. 一种基于MATLAB的圆度评定方法 [J].工具技术, 2003 ,(4): 39-42.
Chen Y P, Yue X B, Zeng X Y. A Method of Round-ness Assessment Based on MATLAB [J]. Tool Engineering, 2003, (4): 39-42.
[12]刘庆民, 张蕾, 吴立群, 等. 基于机器视觉的非均匀分布点圆度误差评定 [J].计量学报, 2016, 37 (6): 567-570.
Liu Q M, Zhang L, Wu L Q, et al. Roundness Error Evaluation of Non-uniformly Distributed Data Points Based on Machine Vision [J]. Acta Metrologica Sinica, 2016, 37 (6): 567-570.
[13]陈若珠, 孙岳. 基于最小二乘法的椭圆拟合改进算法研究 [J]. 工业仪表与自动化装置, 2017, (2): 35-38,46.
Chen R Z, Sun Y. The study of an improved randomized algorithm for detecting ellipses based on least square approach [J]. Industrial Instrumentation & Automation Ind Instrumm Autom, 2017, (2): 35-38+46.
[14]景林, 林耀海, 黄习培. 基于多特征的成捆原木端面轮廓识别方法 [J].计量学报, 2015, 36 (4): 370-374.
Jing L, Lin Y H, Huang X P. Outline Extraction of Bundled Logs Cross Section Based on Multi-feature [J]. Acta Metrologica Sinica, 2015, 36 (4): 370-374.
[15]张世辉, 张红桥, 韩德伟. 结合表观、运动和边缘结构信息的遮挡边界检测方法 [J].计量学报, 2016, 37 (3): 241-245.
Zhang S H, Zhang H Q, Han D W. Occlusion Boundary Detection by Combining Appearance, Motion and Edge Structure Cues in Video [J]. Acta Metrologica Sinica, 2016, 37 (3): 241-245.
[16]田敬波. 基于模板算子边缘检测的图像二值化算法 [J]. 信息技术与信息化, 2017, (9): 98-101.
Tian J B. The Research of Binarization Algorithm Based on Template Operator [J]. Information Technology And Informatization, 2017, (9): 98-101.