1. State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University,Tianjin 300072, China
2. National Institute of Metrology, Beijing, 100029, China
3. Henan Institute of Metrology, Zhengzhou, Henan 450000, China
Abstract:In order to improve the digital recognition efficiency and precision of caliper display, a digital caliper image recognition algorithm based on improved threading method is proposed. The traditional threading method in the digital image recognition of the digital image with vertical tilt has poor practicality and defects frequently, it cannot be widely promoted in the intelligent manufacturing site. To solve this problem, Radon transform is first used to estimate the vertical inclination a angle of digital image, and then the slant line of the estimated angle is used to replace the traditional vertical line of the threading method, so as to realize efficient recognition through digital image segmentation and processing. Experimental results show that the recognition rate of this algorithm is 98%, which can meet the requirements of high density digital image recognition in industrial measurement.
[1]张竟月, 孙斌, 谢玄达, 等. 基于激光和机器视觉的微量液体容量计量方法[J]. 计量学报,2018,39(4):504-509.
Zhang J Y, Sun B, Xie X D, et al. Micro Liquid Volumetric Method based on Laser and Machine Vision[J]. Acta Metrologic Sinica,2018,39(4):504-509.
[2]马丹丹,王鹏程,刘基宏. 基于机器视觉的条码尺精确测量技术在落纱小车中的应用[J]. 计量学报,2019,40(3):409-415.
Ma D D,Wang P C,Liu J H. Application of Accurate Measurement Technology of Barcode Scale in Doffing Vehicle Based on Machine Vision[J]. Acta Metrologica Sinica,2019,40(3):409-415.
[3]Huang Z Q, Wang C F. Reading recognition of digitaldisplay instrument based on BP neutral network[C]//2008 International Conference on Computer Science and Software Engineering. Wuhan, China, 2008.
[4]Chen H, Wang X, Xu B. Study on digital displayinstrument recognition for substation based on pulse coupledneural network[C]//2016 IEEE International Conference on Information and Automation. Ningbo, China, 2016.
[5]唐轶峻, 申小阳, 朱雯兰, 等. 基于BP神经网络的数显仪表数字字符识别系统[J]. 电测与仪表, 2005, 42(9): 42-45.
Tang Y J, Shen X Y, Zhu W L, et al. Recognition System for Character of Numeral Instrument Dynamic Displayed Based on BP Neural Network[J]. Electical Measurement & Instrumentation, 2005, 42(9): 42-45.
[6]卓磊, 周律, 杨丽红. 基于穿线法的计算器数字识别[J]. 软件工程, 2018, 21(12): 1-3.
Zhuo L, Zhou L, Yang L H. Calculator Number Recognition based on Threading Method[J]. Software Engineering, 2018, 21(12): 1-3.
[7]魏畅然. 基于穿线法的数字识别方法[J]. 科技情报开发与经济, 2010, 20(28): 137-139.
Wei C R. Digital Recognition Method based on Threading Method[J]. Sci-Tech Information Development & Economy, 2010, 20(28): 137-139.
[8]申小阳, 唐轶峻, 姜柏军, 等. 仪表的数字字符识别系统[J]. 仪表技术与传感器, 2005, (6): 55-57.
Shen X Y, Tang Y J, Jiang B J, et al. Numeral Characters Recognition System of Instrument[J]. Instrument Technique and Sensor, 2005, (6): 55-57.
[9]曾科, 高潮, 扶新, 等. 多参数数显仪表的自动识别方法研究[J]. 中国测试, 2018, 44(12): 122-128.
Zeng K, Gao C, Fu X, et al. Automatic recognition method for the digital display instrument with multi-parameters[J]. China Measuremeat & Testing Technology, 2018, 44(12): 122-128.
[10]李倩. 文档图像的二值化算法综述[J]. 中国传媒大学学报(自然科学版), 2008, 15(4): 66-70.
Li Q. Summary of Binarization Algorithms for Document Images[J]. Journal of Communication University of China (Science and Technology), 2008, 15(4): 66-70.
[11]褚慧君, 朱宏辉, 高军. 基于改进的投影检测车牌倾斜校正算法[J]. 物流技术, 2017, 36(1): 89-96.
Chu H J, Zhu H H, Gao J. Improved Tilt Correction Algorithm for Shadowgraph Detection of License Plates[J]. Logistics Technology, 2017, 36(1): 89-96.
[12]王蓉芳, 汪仁煌, 康亚芬. 基于数码管机器视觉的小数点识别[J]. 电子测试, 2008, (11): 17-20.
Wan R F, Wan R F, Kang Y F, et al. Decimal Point Recognition based on Nixie Tube Machine Vision [J]. Electronic Test, 2008, (11): 17-20.