2025年05月29日 星期四 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2019, Vol. 40 Issue (4): 693-699    DOI: 10.3969/j.issn.1000-1158.2019.04.24
  电磁学计量 本期目录 | 过刊浏览 | 高级检索 |
基于BSA-RELM的纯电动汽车锂离子电池SOC估计
吴忠强1,尚梦瑶1,申丹丹1,戚松岐1,朱向东2
1. 燕山大学, 河北 秦皇岛 066004
2. 秦皇岛港股份有限公司, 河北 秦皇岛 066004
Estimation of SOC of Li-ion Battery in Pure Electric Vehicle by BSA-RELM
WU Zhong-qiang1,SHANG Meng-yao1,SHEN Dan-dan1,QI Song-qi1,ZHU Xiang-dong2
1. Yanshan University, Qinhuangdao, Hebei 066004, China
2. Qinhuangdao Port Co. LTD., Qinhuangdao, Hebei 066004, China
全文: PDF (1451 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 提出一种基于鸟群算法优化鲁棒极限学习机的锂离子电池荷电状态估计算法。鲁棒极限学习机克服了极限学习机不能处理异常值的缺点,提高了网络的预测准确率。利用鸟群算法优化鲁棒极限学习机的隐层节点数和调节因子等参数,解决隐层节点数和调节因子等参数难以确定的问题,可进一步提高网络的收敛速度,且利于寻找全局最优值。利用ADVISOR软件采集影响电池荷电状态的主要参数:电流、电压、温度和内阻等进行建模和测试。仿真结果表明,采用鸟群算法优化鲁棒极限学习机比BPNN、RBFNN和FNN的估计误差更小,具有更高的预测精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴忠强
尚梦瑶
申丹丹
戚松岐
朱向东
关键词 计量学荷电状态锂离子电池纯电动汽车鸟群算法鲁棒极限学习机    
Abstract:A method based on bird swarm algorithm optimizing robust extreme learning machine is proposed to estimate the charge state of the battery. Robust extreme learning machine overcomes the shortcomings that extreme learning machine can not deal with the abnormal value, so the prediction accuracy of the network is improved. The parameters such as the number of hidden nodes and the adjustment factors of robust extreme learning machine are optimized by bird swarm algorithm, so the problems that the parameters such as the number of hidden nodes and the adjustment factors are difficult to be determined can be solved, which can further improve the convergence speed of the network and help to find the global optimal value. Several key parameters including current, voltage, temperature and internal resistance, which affect the SOC characteristics of the battery, are collected to model and test by ADVISOR software. Simulation results show that compared with other algorithms such as BPNN, RBFNN and FNN, BSA-RELM has a smaller error and higher prediction accuracy.
Key wordsmetrology    SOC    Li-ion battery    PEV    BSA    robust extreme learning machine
收稿日期: 2018-01-24      发布日期: 2019-06-10
PACS:  TB971  
基金资助:河北省自然科学基金(F2016203006)
通讯作者: 吴忠强     E-mail: mewzq@163.com
作者简介: 吴忠强(1966-),男,上海人,博士,燕山大学教授,从事新能源发电系统控制研究。Email:mewzq@163.com
引用本文:   
吴忠强,尚梦瑶,申丹丹,戚松岐,朱向东. 基于BSA-RELM的纯电动汽车锂离子电池SOC估计[J]. 计量学报, 2019, 40(4): 693-699.
WU Zhong-qiang,SHANG Meng-yao,SHEN Dan-dan,QI Song-qi,ZHU Xiang-dong. Estimation of SOC of Li-ion Battery in Pure Electric Vehicle by BSA-RELM. Acta Metrologica Sinica, 2019, 40(4): 693-699.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2019.04.24     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2019/V40/I4/693
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn