Study on an Improved Extended PSO Algorithm Based on Geese Flight
LIU Hao-ran1,2,CUI Jing-chuang2,LU Ze-dan2,GUO Chang-jiang2,DING Pan2
1. Hebei Province Key Laboratory of Special Optical Fiber & Optical Fiber Sensing, Qinhuangdao, Hebei 066004, China
2. Information Science and Engineering College of Yanshan University, Qinhuangdao, Hebei 066004, China
3. Liren College of Yanshan University, Qinhuangdao, Hebei 066004, China
Abstract:To solve the local minimum problem of PSO, a new algorithm called GeEPSO is proposed, which hybrids the PSO based on the flight of geese and the extended PSO algorithm. The GeEPSO take the advantage of the various directions of geese and make full use of the position of each particle to assure the diversity of particle swarm. And to further improve the convergence performance, the simplified PSO is introduced to obtain another new algorithm GeESPSO. The simulation results of some benchmarks demonstrate the GeEPSO algorithm can deal well with the conflict between the convergence rate and the local minimum problem, which is better on the whole. And to further investigate the effect of the proposed algorithms in practical application, the new algorithms were used to optimize the BP neural network. Finally the prediction of PM2.5 is made with the improved BP neural network, using the meteorological data.
刘浩然,崔静闯,卢泽丹,郭长江,丁攀. 一种改进的雁群扩展粒子群算法研究[J]. 计量学报, 2019, 40(3): 498-504.
LIU Hao-ran,CUI Jing-chuang,LU Ze-dan,GUO Chang-jiang,DING Pan. Study on an Improved Extended PSO Algorithm Based on Geese Flight. Acta Metrologica Sinica, 2019, 40(3): 498-504.
[1]杨景明,陈伟明,车海军,等. 基于粒子群算法优化支持向量机的铝热连轧机轧制力预报[J].计量学报,2016,37(1): 71-74.
Yang J M, Chen W M, Che H J, et al. Rolling Force Prediction Based on Support Vectors Machine with Particle Swam Optimization [J].Acta Metrologica Sinica, 2016, 37(1): 71-74.
[2]程淑红,高许,程树春,等.基于计算机视觉的运动车辆检测[J]. 计量学报, 2017, 38(3): 288-291.
Cheng S H, Gao X, Cheng S C, et al. Moving Vehicle Detection Based on Computer Vision[J]. Acta Metrologica Sinica, 2017, 38(3): 288-291.
[3]张火明,高明正,张晓菲,等.智能优化平台的并行实现及在光学设计中的应用研究[J]. 计量学报 2011, 32(2): 131-136.
Zhang H M, Gao M Z, Zhang X F,et al.Parallel Implementation of Intelligent Optimization Platform and Application in Optical Design[J].Acta Metrologica Sinica, 2011,32(2): 131-136.
[4]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420.
Lv Z S, Hou Z R. Particle Swarm Optimization with Adaptive Mutation [J].Acta Electronica Sinica,2004,32(3):416-420.
[5]高鹰,谢胜利.基于模拟退火的粒子群优化算法 [J].计算机工程与应用,2004,40(1):47-50.
Gao Y, Xie S L. Particle Swam Optimization Algorithms Based on Simulated Anealing [J]. Computer Engineering and Applications, 2004, 40(1):47-50.
[6]Liang J J,Qin A K,Suganthan P N, et al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J].IEEE Transactions on Evolutionary Computation, 2006,10(3):281-295.
[7]胥小波,郑康锋,李丹,等.新的混沌粒子群优化算法[J].通信学报,2012,33(1):24-30,37.
Xue X B, Zheng K F, Li D, et al. New Chaos-Particle Swarm Optimization Algorithm [J].Journal of Communications, 2012, 33(1):24-30,37.
[8]赵新超,刘国莅,刘虎球,等.基于非均匀变异和多阶段扰动的粒子群优化算法[J].计算机学报,2014,37(9):2058-2070.
Zhao X C, Liu G L, Liu H Q, et al. Particle Swarm Optimization Based on Non-Uniform Mutation and Mutiple States Perturbation [J].Chinese Journal of Computer, 2014, 37(9):2058-2070.
[9]夏学文,刘经南,高柯夫,等.具备反向学习和局部学习能力的粒子群算法[J].计算机学报,2015,38(7):1397-1407.
Xia X W, Liu J N, Gao K F, et al. Particle Swarm Optimization Algorithm[J]. Chinese Journal of Computer, 2015, 38(7):1397-1407.
[10]刘金洋,郭茂祖,邓超.基于雁群启示的粒子群优化算法[J].计算机科学,2006,33(11):166-168,191.
Liu J Y, Gao M Z, Deng Chao. GeesePSO: An Efficient Improvement to Particle Swarm Optimization [J]. Computer Science, 2006, 33(11):166-168,191.
[11]高鹰.一种自适应扩展粒子群优化算法[J].计算机工程与应用,2006,42(15):12-15.
Gao Y. An Adaptive Extended Particle Swam Optimization Algorithm [J]. Computer Engineering and Applications, 2006, 42(15):12-15.
[12]Shi Y,Eberhart R.Modified particle swarm optimizer [C]// IEEE International Conference on Evolutionary Computation Proceedings,1998.IEEE World Congress on Computational Intelligence. IEEE Xplore,1997:69-73.
[13]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868.
Hu W, Li Z S. A Simpler and More Effective Particle Swarm Optimization Algorithm [J]. Journal of Software, 2007, 18(4):861-868.
[14]Liang X,Zou T,Guo B,et al.Assessing Beijings PM2.5pollution: severity,weather impact,APEC and winter heating [J].Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences,2015,471(2182):20150257.