Abstract:A novel method using the regular distributed partial data for the periodic signal analysis is proposed. Differential measurement of the non-sinusoidal voltage signal based on a staircase waveform is discussed, where the first and last parts of each step are discarded to overcome the transient effect and Gibbs phenomenon. In Fourier transformation of higher frequency components the significant deviations will be caused. When the base functions are divided with same mode, the relevant influence matrix will be derived; its inverse matrix can then recover the original Fourier coefficients. The key point here is to simplify calculation of the inverse matrix. The condition of this simplification is proposed in which the influence matrix becomes sparse. The limiting amplitude condition required in the differential sampling based on the staircase waveform is investigated. Simulations and demonstration experiments show an acceptable workload and a very high accuracy. This method can be applied to spectrum analysis when partial samples are regularly lost.
[1]陆祖良,杨雁,黄璐,等. 片段采样与阶梯波测量——阶梯波研究之二[J]. 计量学报, 2019, 40(1): 31-39.
Lu Z L, Yang Y, Huang L, et al. Piecewise sampling and measurement of staircase waveform [J].Acta Metrologia Sinica, 2019, 40(1): 31-39.
[2]陆祖良,杨雁,黄璐,等. 正弦波电压差分测量与多周期策略——阶梯波研究之三 [J].计量学报,2019, 40(2): 319-328.
Lu Z L, Yang Y, Huang L, et al. Differential Measurement of Sine Wave Voltage and Multi-period Strategy [J].Acta Metrologia Sinica, 2019, 40(2): 319-328.
[3]Behr R, Palafox L, Ramm G, et al. Direct comparison of Josephson waveforms using an AC quantum voltmeter[J].IEEE Trans Instrum Meas, 2007,56(2):235-238.
[4]Rufenacht A, Burroughs C J, Benz S P. Precision sampling measurements using AC programmable Josephson voltage standards[J]. Rev Sci Instrum, 2008, 79 (4):044704-1-044704-9.
[5]Rufenacht A, Burroughs C J, Dresselhaus P D, et al. Differential sampling measurement of a 7 V RMS sine wave with a programmable Josephson voltage standard[J].IEEE Trans Instrum Meas, 2013, 62(6):1587-1593.
[6]Schubert M, Starkloff M, Lee J, et al.An AC Josephson voltage standard up to the kilohertz range tested in a calibration laboratory[J].IEEE Trans Instrum Meas, 2015, 64(3):1620-1626.
[7]Arseneau R, Filipski P S, Zelle J J.An improved three-phase digital recorder system for calibrating power instrumentation[J].IEEE Trans Instrum Meas, 1997,46:399-402.
[8]Svensson S.Verification of calibration system for power quality instruments[J].IEEE Trans Instrum Meas, 1998,47(5):1391-1394.
[9]Ihlenfeld W G K,Mohns E, Bachmair H,et al.Evaluation of the synchronous generation and sampling technique[J].IEEE Trans Instrum Meas, 2003, 52(2):371-374.
[10]Lu Z L, Wang L, Li M, et al.Harmonic power standard at NIM and its compensation algorithm[J].IEEE Trans Instrum Meas, 2010, 59(1):180-187.
[11]Marvasti F.Nonuniform Sampling, Theory and Practice[M].New York: Springer US, 2001.
[12]Yen J L.On non-uniform sampling of bandwidth limited signals[J].IRE Trans Circuit Theory, 1956,3:251-257.
[13]Kida T, Akagawa K.Sampling theorems using nonuniform sample points and interpolation functions with band-limited continuous spectra[J].Electron Commun Jpn, Part III: Fundam Electron Sci, 1989, 72(6):59-70.
[14]Strohmer T,Tanne J.Fast reconstruction algorithms for periodic nonuniform sampling with applications to time-interleaved ADCs[J].2007 IEEE Int Conf Acoustics, Speech and Signal Processing (ICASSP '07), 2007, 3(1):III-881-III-884.
[15]Adcock B, Gataric M, Hansen A C. Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples[J]. Applied & Computational Harmonic Analysis, 2017,42(3):508-535.
[16]Dunlop J, Phillips V J. Signal recovery from repetitive non-uniform sampling patterns[J].Radio Electron Eng, 1974,44(9):491-503.
[17]Sommen P, Janse K. On the relationship between uniform and recurrent nonuniform discrete-time sampling schemes[J].IEEE Trans Signal Process, 2008,56(10):5147-5156.
[18]Fjllbrant T.Method of data reduction of sampled speech signals by using nonuniform sampling and a time-variable digital filter[J].Electronics Letters, 1977,13(11):334-335.
[19]Bonacci D,Lacaze B. Lowpass/bandpass signal reconstruction and digital filtering from nonuniform samples[C]//2015 IEEE Int Conf Acoustics, Speech and Signal Processing (ICASSP), 3626-3630, 2015.
[20]Razafinjatovo H N.Iterative reconstructions in irregular sampling with derivatives[J].J Fourier Anal Appl, 2001,1(3):281-295.
[21]陆祖良,杨雁,黄璐,等. 阶梯波性质再讨论——阶梯波研究之一 [J].计量学报,2018, 39(6):759-767.
Lu Z L, Yang Y, Huang L, et al. Further discussion on characteristics of staircase waveform [J].Acta Metrologia Sinica, 2018, 39(6):759-767.
[22]Landau H J.Necessary density conditions for sampling and interpolation of certain entire functions[J]. Acta Math, 1967,117(7):37-52.
[23]Lu Z L.Discussion on new properties of staircase waveform through connection to an infinite series[J].IET Sci Meas Technol, 2015,9(1):63-72.
[24]中国计量科学研究院. 一种准确测量非正弦电压信号的方法及其系统:ZL 2014 1 0401895. X [P]2014.
[25]中国计量科学研究院. 部分采样数据规则性缺失时的信号频谱分析方法及系统:2017109009804 [P]. 2017.