Abstract:A new fault feature extraction method for rolling bearing based on correlation dimension is proposed. Linear object recognition region is an important factor for the accuracy of correlation dimension, this method is characterized by the fluctuation of the two order derivative corresponding to the linear scaling region of the correlation dimension,the two order derivative data points are transformed into line segments,then the two clustering analysis is done by line segment clustering method, and the gross error is eliminated by statistical rule.Finally, the eigenvalues are fitted to data.This method is used to simulate and analyze the classical Lorenz chaotic system, and the effect is good. Four kinds of signal of rolling bearing are identified, and the experiment shows that the new method can identify the bearing fault signal more accurately.
[1]谢平,江国乾,武鑫,等.基于多尺度熵和距离评估的滚动轴承故障诊断[J].计量学报,2013,34(6):548-553.
Xie P, Jiang G Q, Wu X, et al. Rolling bearing fault diagnosis based on multiscale entropy and distance evaluation[J]. Acta Metrology Sinica, 2013, 34(6):548-553.
[2]臧怀刚,李清志,韩艳龙,等.基于改进的经验模态分解的滚动轴承故障诊断研究[J].计量学报,2013,34(2): 101- 105.
Zang H G, Li Z Q, Han Y L, et al. Study of roller bearing fault diagnosis based on the improved empirical mode decomposition[J]. Acta Metrology Sinica, 2013,34(2): 101- 105.
[3]时培明,梁凯,赵娜,等.基于分形维数和GA-SVM的风电机组齿轮箱轴承故障诊断[J].计量学报,2018,39(1):61-65.
Shi P M, Liang K, Zhao N, et al. Fault Diagnosis of Wind Turbine Gearbox Bearing Based on Fractal Dimension and GA-SVM[J]. Acta Metrology Sinica, 2018, 39(1):61-65.
[4]刘长良,武英杰,甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报,2015, 35(13):3358- 3365.
Liu C L, Wu Y J, Zhen C G. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering[J]. Proceedings of the CSEE, 2015, 35(13):3358-3365.
[5]黄振峰,刘永坚,毛汉颖,等.基于K熵和关联维数的金属疲劳损伤过程的声发射信号特征分析[J].振动与冲击,2017,36(15):210-214.
Huang Z f, Liu Y j, Mao H Y, et al. Feature analysis for acoustic emission signals during metal fatigue damage based on Kolmogorov entropy and correlation dimension[J]. Journal of Vibration and Shock, 2017,36(15):210-214.
[6]Pei J,Zhou F, Meng Z, et al. Rolling Bearing Fault Diagnosis Study Based on Chaos and Fractal Theory[C]// IEEE.International Conference on Mechanic Automation and Control Engineering (MACE), 2010: 5295-5297.
[7]孟宗,李良良.基于局部特征尺度分解和形态学分形维数的滚动轴承故障诊断方法[J].计量学报,2016, 37(3): 284-288.
Meng Z, Li L L. Rolling bearing fault diagnosis based on local characterist-scale decomposition and morphological fractal dimension[J]. Acta Metrology Sinica, 2016, 37(3): 284-288.
[8]周翔,王丰华,傅坚,等.基于混沌理论和K-means聚类的有载分接开关机械状态监测[J].中国电机工程学报,2015,35(6):1541-1548.
Zhou X, Wang F h, Fu J, et al. Mechanical condition monitoring of on-load tap changers based on chaos theory and K-means clustering method[J]. Proceedings of The Csee, 2015, 35(6):1541-1548.
[9]张立国,康乐,金梅,等.一种基于EEMD-SVD和FCM的轴承故障诊断方法[J].计量学报,2016,37(1):67-70.
Zhang L G, Kang L, Jin M, et al. A bearing fault diagnosis method based on EEMD-SVD and FCM clustering[J]. Acta Metrology Sinica, 2016,37(1):67-70.
[10]张淑清,邢婷婷,何红梅,等.基于VMD及广义分形维数矩阵的滚动轴承故障诊断[J].计量学报,2017, 38(4): 439-443.
Zhang S Q, Xing T T, He H M, et al. Bearing fault diagnosis method based on VMD and generalized fractal dimension matrix[J]. Acta Metrology Sinica, 2017, 38(4): 439-443.
[11]何群,王红,江国乾,等. 基于相关主成分分析和极限学习机的风电机组主轴承状态监测研究[J].计量学报, 2018,39(1): 89-93.
He Q,Wang H,Jiang G Q, et al. Research of Wind Turbine Main Bearing Condition Monitoring Based on Correlation PCA and ELM[J]. Acta Metrology Sinica, 2017,39(1):89-93.
[12]张忠云,吴建德,马军,等.基于混沌分形理论的滚动轴承微小故障诊断[J].中南大学学报(自然科学版),2016,47(2): 640-646.
Zhang Z Y, Wu J D, Ma J, et al. Slight fault diagnosis for rolling bearing based onchaos and fractal theory[J]. Journal of Central South University, 2016,47(2): 640-646.
[13]李琳,张永祥,明廷涛.EMD降噪的关联维数在齿轮故障诊断中的应用研究[J].振动与冲击,2009,28(4):145-148,209.
Li L, Zhang Y X, Ming T T. Study on the diagnosis of gear based on correlation dimension pre-conducted by EMD[J]. Journal of Vibration and Shock, 2009, 28(4):145-148,209.
[14]Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D: Nonlinear Phenomena, 1983, 9(1-2): 189-208.