2025年04月07日 星期一 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2017, Vol. 38 Issue (5): 626-630    DOI: 10.3969/j.issn.1000-1158.2017.05.23
  电磁学计量 本期目录 | 过刊浏览 | 高级检索 |
基于样本熵的风力发电机早期故障检测
谢平,王一凡,江国乾,黄梦君,何群
燕山大学 电气工程学院 河北省测试计量技术及仪器重点实验室, 河北 秦皇岛 066004
Incipient Fault Detection of Generators in Wind Turbines Based on Sample Entropy
XIE Ping,WANG Yi-fan,JIANG Guo-qian,HUANG Meng-jun,HE Qun
Key Lab of Measurement Technology and Instrumentation of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
全文: PDF (509 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对发电机定子匝间短路和转子断条等早期故障特征具有幅值小、非稳态、易受工况影响等特点,引入样本熵算法实现风力发电机定子电流和电磁转矩信号特征提取,并模拟不同负载条件下故障信号,实现定量参数分析。分析结果表明,样本熵算法适用于在变工况及噪声干扰条件下,对短数据参量进行分析并实现故障特征定量描述,可用于风力发电机早期故障检测和实时在线监测。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 计量学风力发电机样本熵定子匝间短路转子断条变负载    
Abstract:In order to test the generator incipient faults, such as stator windings inter-turn and broken rotor bars, which have such characteristics with small amplitude, non-stationary and susceptible to load variations, a sample entropy algorithm is introduced to perform fault feature extraction from the stator current and electromagnetic torque signals of generators in wind turbines. The proposed method is used to analyze fault signals under different load conditions to realize the quantitative representation of faulty signals. The results demonstrate that sample entropy algorithm is applicable to achieve fault characteristics quantification with data of short length, especially under varying operations and noise environments and it has great potentials in early fault detection and real-time online monitoring.
Key wordsmetrology    wind generators    sample entropy    stator windings inter-turn    broken rotor bars    load variations
收稿日期: 2015-07-08      发布日期: 2017-08-11
PACS:  TB971  
基金资助:河北省高等学校科学技术研究重点项目(ZD20131080); 秦皇岛市科技支撑计划项目(201502A008)
通讯作者: 谢平     E-mail: pingx@ysu.edu.cn
作者简介: 谢平(1972-),女,黑龙江齐齐哈尔人,燕山大学教授,博士生导师,主要从事复杂系统状态监测与故障诊断方面的研究。pingx@ysu.edu.cn
引用本文:   
谢平,王一凡,江国乾,黄梦君,何群. 基于样本熵的风力发电机早期故障检测[J]. 计量学报, 2017, 38(5): 626-630.
XIE Ping Yi-fan WANG JIANG Guo-qian Meng-Jun HUANG HE Qun. Incipient Fault Detection of Generators in Wind Turbines Based on Sample Entropy. Acta Metrologica Sinica, 2017, 38(5): 626-630.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2017.05.23     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2017/V38/I5/626
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn