2025年04月30日 星期三 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2016, Vol. 37 Issue (6): 576-581    DOI: 10.3969/j.issn.1000-1158.2016.06.06
  光学计量 本期目录 | 过刊浏览 | 高级检索 |
基于图的半监督学习的遮挡边界检测方法
张世辉1,2,张钰程1,张红桥1,李鑫1
1.燕山大学 信息科学与工程学院, 河北 秦皇岛 066004;
2.河北省计算机虚拟技术与系统集成重点实验室, 河北 秦皇岛 066004
Occlusion Boundary Detection Using Graph-based Semi-supervised Learning
ZHANG Shi-hui1,2,ZHANG Yu-cheng1,ZHANG Hong-qiao1,LI Xin1
1. School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;
2. The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao, Hebei 066004, China
全文: PDF (1422 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 提出了一种基于图的半监督学习检测深度图像中遮挡边界的方法。该方法首先获取已标记的像素点和待检测深度图像中的像素点作为顶点构建连通无向图,其次提取无向图中各像素点的最大深度差特征和八邻域有效深度差之和特征组成特征向量,根据像素点的特征向量计算无向图中顶点之间的相似性并将该相似性作为无向图中对应边的权值,然后根据图的半监督学习思想判断无向图中待检测像素点是否为遮挡边界点,最后可视化遮挡边界点得到深度图像中的遮挡边界。实验结果表明,所提方法尽管只需少量的标记样本,但在准确性上却同已有基于监督学习的方法相当。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张世辉
张钰程
张红桥
李鑫
关键词 计量学图像识别遮挡边界图的半监督学习深度图像无向连通图八邻域有效深度差    
Abstract:A novel occlusion boundary detection approach is proposed for depth image by using graph-based semi-supervised learning. Firstly, the connected undirected graph is constructed with the labeled and unlabeled pixels as vertexes. Secondly, the feature vector of each pixel is gained by extracting its maximal depth difference and the sum of eight neighborhood effective depth differences, and the similarity between the pixels are computed as the weight of the corresponding edge in the undirected graph. Thirdly, the pixels to be detected in the undirected graph are labeled as occlusion or nonocclusion boundary point according to graph-based semi-supervised learning idea. Finally, the occlusion boundary points in depth image are visualized and the occlusion boundary can be obtained. The experimental results show that, although only a small amount of labeled samples, the proposed approach is equivalent to the existing supervised-based learning method in accuracy.
Key wordsmetrology    image identification    occlusion boundary    graph-based semi-supervised learning    depth image    connected undirected graph    eight neighborhood effective depth differences
收稿日期: 2014-11-28      发布日期: 2016-10-14
PACS:  TB96  
基金资助:国家自然科学基金(61379065);河北省自然科学基金(F2014203119)
通讯作者: 张世辉     E-mail: sshhzz@ysu.edu.cn
作者简介: 张世辉(1973-),男,河北赞皇人,燕山大学教授,博士生导师,主要从事视觉信息处理方面的研究。sshhzz@ysu.edu.cn
引用本文:   
张世辉,张钰程,张红桥,李鑫. 基于图的半监督学习的遮挡边界检测方法[J]. 计量学报, 2016, 37(6): 576-581.
ZHANG Shi-hui,ZHANG Yu-cheng,ZHANG Hong-qiao,LI Xin. Occlusion Boundary Detection Using Graph-based Semi-supervised Learning. Acta Metrologica Sinica, 2016, 37(6): 576-581.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2016.06.06     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2016/V37/I6/576
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn