Abstract:A rolling bearing fault diagnosis method based on the morphological fractal dimension and Local Characterist-scale Decomposition is proposed. Firstly, Local Characterist-scale Decomposition is used to decompose the mechanical fault signals into a set of Intrinsic scale components, and then the morphological fractal dimension of Intrinsic scale components which contain the Intrinsic scale component characteristics is calculated. This is obtained as a characteristic parameter to judge the signal fault types. The experimental results that the proposed method based on the morphological fractal dimension and Local Characterist-scale Decomposition can realize different signal states (inner fault, outer race fault, rolling element fault and normal) about the bearing fault and the rolling fault diagnosis effectively.
[1]Logan D, Mathew J. Using the correlation dimension for vibration fault diagnosis of rolling element bearings-I-Basic cincepts [J].Mechanical Systems and Signal Processing,1996, 10(3):241-250.
[2]谢平,王欢,杜义浩. 基于EMD和Wigner-Ville分布的机械故障诊断方法研究[J].计量学报,2010, 31(5):390-394.
[3]臧怀刚,李清志,韩艳龙,等. 基于改进的经验模式分解的滚动轴承故障诊断研究[J].计量学报,2013,34(2):101-105.
[4]谢平,杨玉昕,江国乾,等. 基于局部均值分解的滚动轴承故障诊断新方法[J].计量学报,2014,35(1):73-77.
[5]孟宗,顾海燕. 基于盲源分离去噪和HHT的旋转机械故障诊断研究[J]. 计量学报,2013,34(3):242-246.
[6]李兵, 张培林, 任国全,等. 基于数学形态学的分形维数计算及在轴承故障诊断中的应用[J].振动与冲击,2010,29(5): 191-194.
[7]胥永刚, 何正嘉. 分形维数和近似熵用于度量信号复杂性的比较研究[J].振动与冲击,2003, 22(3):25-27.
[8]张亢,程军圣,杨宇. 基于局部均值分解与形态学分形维数的滚动轴承故障诊断方法[J]. 振动与冲击,2013, 32(9): 91-93.
[9]Yang N X, Qi D W. Blockboard defect detection based on wavelet transform and mathematical morphology[J].Advances in Intelligent and Soft Computing, 2011,106(3): 455-460.
[10]程军圣,郑近德,杨宇. 一种新的非平稳信号分析方法—局部特征尺度分解法[J].振动工程学报,2012,25(2):215-219.