2025年04月30日 星期三 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2016, Vol. 37 Issue (2): 171-176    DOI: 10.3969/j.issn.1000-1158.2016.02.14
  本期目录 | 过刊浏览 | 高级检索 |
混沌驱动永磁同步电机系统的故障识别
吴忠强,吴昌韩,贾文静,赵立儒
燕山大学电气工程学院工业计算机控制工程河北省重点实验室, 河北 秦皇岛 066004
Fault Identification of Permanent Magnet Synchronous Motor System Driving under Chaotic State
WU Zhong-qiang,WU Chang-han,JIA Wen-jing,ZHAO Li-ru
Key Lab of Industrial Computer Control Engineering of Hebei Province, College of Electric Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
全文: PDF (1429 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 研究了混沌驱动永磁同步电机系统的故障识别问题,设计了一种小波支持向量机故障识别器。首先对故障恢复信号进行经验模态分解,得到若干个平稳的本征模函数,将本征模函数的能量特征作为输入构建小波支持向量机故障识别器。训练完成后,冻结小波支持向量机结构与内部参数,以白噪声模拟实际运行中的未知扰动,并以加入扰动的故障信号作为测试输入,利用小波支持向量机故障识别器进行故障识别。结果表明,基于小波支持向量机的故障识别器能够较好地识别故障信号,拟合误差均在1%以内。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴忠强
吴昌韩
贾文静
赵立儒
关键词 计量学永磁同步电机故障识别混沌态盲分离经验模态分解小波支持向量机    
Abstract:A research on fault identification of the permanent magnet synchronous motors driving under chaotic state is carried out, a fault identifier based on the wavelet support vector machine is established. After the empirical mode decomposition of the restored fault signals, serial stationary intrinsic mode functions are obtained, and their energy characteristics are used as inputs to establish a fault identifier based on the wavelet support vector machine. After training, the structure of the wavelet support vector machine and its internal parameters are fixed. The white noises usually simulate the unknown disturbances in practice. As the test inputs, the fault signals are mixed with white noises, and are identified by the fault identifier. The simulation results show that the fault identifier based on the wavelet support vector machine can identify the fault signals well, the fitting error is less than 1%.
Key wordsmetrology    permanent magnet synchronous motor    fault identification    chaotic state    blind source separation    empirical mode decomposition    wavelet support vector machine
收稿日期: 2014-10-28      发布日期: 2016-01-27
PACS:  TB936  
基金资助:国家自然科学基金委员会与宝钢集团有限公司联合资助项目(U1260203);河北省自然科学基金(F2012203088)
通讯作者: 吴忠强     E-mail: mewzq@163.com
作者简介: 吴忠强(1966-),男,上海人,燕山大学教授,博士,研究方向为模式识别与故障诊断。mewzq@163.com
引用本文:   
吴忠强,吴昌韩,贾文静,赵立儒. 混沌驱动永磁同步电机系统的故障识别[J]. 计量学报, 2016, 37(2): 171-176.
WU Zhong-qiang,WU Chang-han,JIA Wen-jing,ZHAO Li-ru. Fault Identification of Permanent Magnet Synchronous Motor System Driving under Chaotic State. Acta Metrologica Sinica, 2016, 37(2): 171-176.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2016.02.14     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2016/V37/I2/171
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn