Numerical Simulation for the Dynamic Response Calibration of the Sheathed Thermocouple
LIU Bo1,ZHENG Wei1,WANG Zhi-yuan2,LI Xue-jing1
1. Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
2. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
摘要时间常数是描述温度传感器动态响应特性的重要参数。由于实验室校准条件通常难以覆盖温度传感器的实际使用条件,因此基于有限体积法数值仿真研究了插入法和回路电流阶跃响应(loop current step response,LCSR)法校准铠装热电偶动态响应的过程。建立了热电偶保护管、绝缘层、感温层的三维模型,分析了绝缘层MgO不同填充密实度下热电偶的动态响应。结果发现,采用3个极点的方程对LCSR响应数据进行拟合、变换求得的时间常数与插入法获得的时间常数偏差小于10%,为快响应铠装热电偶动态特性的设计、校准提供了一种新方法。
Abstract:Time constant is one of the important parameters for temperature sensor`s dynamic response. Because the calibration conditions usually can`t cover the temperature sensors service conditions, the dynamic responses of a sheathed thermocouple under plunge test and loop current step response (LCSR) test were numerically simulated by the finite volume method. Three-dimensional structure models of the thermocouple with protective tube, insulating layer and sensing layer were established. The dynamic responses of the thermocouple with different MgO ratio in the insulating layer were analyzed. The results show that the time constants obtained by fitted and transformed LCSR data with the equation of three poles agree well with the time constants obtained by the plunge test, and the deviations are less than 10%. These provide a new method for the design and calibration of the fast response sheathed thermocouples.
[1]JJF 1049—1995 温度传感器动态响应校准规范[S].
[2]纳鑫, 谢建斌, 徐立新, 等. 一种用于高速气流瞬态测温的快速响应热电偶[J]. 科学通报, 2019, 64(31): 3223-3231.
Na X, Xie J B, Xu L X, et al. A rapid response micro-thermocouple used for transient temperature measurement of high-speed gas flow[J]. Chinese Science Bulletin, 2019, 64: 3223-3231.
[3]贾超, 蔡杰, 熊朝晖. 不同传热方式下温度传感器动态特性研究[J]. 计量学报, 2020, 41(5): 563-566.
Jia C, Cai J, Xiong Z H. Study on dynamic characteristics of temperature sensors under different heat transfer modes[J]. Acta Metrologica Sinica, 2020, 41(5): 563-566.
[4]杨兆欣, 顾正华, 曾星, 等. 热电偶级联系统动态性能评估方法研究[J]. 仪器仪表学报, 2020, 41(11): 74-81.
Yang Z X, Gu Z H, Zeng X, et al. Study on dynamic characteristics evaluation method of the cascade thermocouple system[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 74-81.
[5]刘波, 王崇愿, 朱鹏飞. 水流环境下温度传感器动态响应测量的不确定度评定[J]. 计量学报, 2020, 41(10): 1240-1244.
Liu B, Wang C Y, Zhu P F. Uncertainty evaluation on temperature sensors dynamic response based on water facility[J]. Acta Metrologic Sinica, 2020, 41(10): 1240-1244.
[6]刘波,王崇愿,何永兴. 热电偶时间常数测量的不确定度评定[J].传感技术学报,2020,33(5):666-669.
Liu B, Wang C Y, He Y X. Uncertainty evaluation on thermocouples time constant[J]. Chinese Journal of Sensors and Actuators, 2020, 33(5): 666-669.
[7]白鸽. 航空发动机进气总温传感器测温误差研究[J].测控技术,2020,39(3): 76-83.
Bai G. Research on temperature measurement error of aero-engine inlet total temperature sensor[J]. Measurement & Control Technology,2020,39(3):76-83.
[8]Diniz A C G C, de Almeida M E K, Vianna J N S, et al. Methodology for estimating measurement uncertainty in the dynamic calibration of industrial temperature sensors[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(3): 1053-1060.
[9]Ogorevc J, Bojkovski J, Punik I, et al. Dynamic measurements and uncertainty estimation of clinical thermometers using Monte-Carlo method[J]. Measurement Science and Technology, 2016, 27(9): 095001.
[10]Coote J M, Torii R, Desjardins A E. Dynamic characterization of fiber-optic temperature sensors for physiological monitoring[J]. Sensors, 2020, 21: 221.
[11]Luo C,Wang H,Zhang D C, et al. Analytical evaluation and experiment of the dynamic characteristics of double-thimble-type fiber Bragg grating temperature sensors[J]. Micromachines,2021,12(1):16.
[12]张磊,彭艳,王曦.航空机载镍电阻温度传感器仿真及优化设计[J].航空动力学报,2021,36(2): 440-448.
Zhang L,Peng Y,Wang X.Simulation and optimization design of aviation nickel resistance temperature sensor[J].Journal of Aerospace Power,2021,36(2):440-448.
[13]宋延勇. LCSR法响应时间原位测量装置的设计与实现[J]. 自动化仪表, 2017, 38(8): 83-86.
Song Y Y. Design and implementation of the in situ measurement device for response time by using LCSR method[J]. Process Automation Instrumentation, 2017, 38(8): 83-86.
[14]胡芃, 陈则韶. 量热技术和热物性测定[M]. 2版. 合肥: 中国科学技术大学出版社, 2009.
[15]Bergman T L,Lavine A S,Incropera F P,et al. Fundamentals of heat and mass transfer [M]. 7th ed. New York:Wiley, 2011.
[16]Rupnik K, Kutin J, Bajsic′ I. Identification and prediction of the dynamic properties of resistance temperature sensors[J]. Sensors and Actuators A: Physical, 2013, 197: 69-75.