Abstract:In the research on the decoding of EEG signals, there are existing time-frequency analysis methods that have limited high-frequency signal processing capabilities, multi-channel signal information redundancy, and the ReLU activation function of the commonly used convolutional neural network classifier is greatly affected by the learning rate. It is difficult to obtain satisfactory results with the same regularization for different layers. To solve the above problems, a method based on the combination of generalized S-transform feature extraction and enhanced convolutional neural network classification is proposed. At the same time, a wrapping method combining Relief algorithm and forward selection search strategy is proposed for channel selection. The results show that the proposed method uses less signal channels and achieves better ability of feature extraction and classification. The highest classification accuracy of 98.44±1.5% is obtained in the fourth BCI dataset I, which is higher than other existing algorithms. The good classification performance of this study not only reduces the calculation consumption, also effectively improves the classification accuracy, which has a certain reference significance for EEG feature extraction and classification.
[1]罗志增, 袁飞龙, 高云园. 小波和希尔伯特变换在脑电信号消噪中的对比研究[J]. 计量学报, 2013, 34(6): 567-572.
Luo Z Z, Yuan F L, GaoY Y. The Comparative Research on Wavelet and Hilbert Transform in the EEG De-noising [J]. Acta Metrologica Sinica, 2013, 34(6): 567-572.
[2]Fu R R, Han M M, Tian Y S, et al. Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis[J]. J Neurosci Methods, 2020, 343: 108833.
[3]Hu Y L, Wang L M, Fu W. EEG feature extraction of motor imagery based on WT and STFT[C]// Hu Yulu, 2018 IEEE International Conference on Information and Automation (ICIA). Wu Yishan: IEEE-Verlag, 2018: 83-88.
[4]Hsu W Y, Sun Y N. EEG-based motor imagery analysis using weighted wavelet transform features[J]. J Neurosci Methods, 2019, 176 (2): 310-318.
[5]Dai G H, Zhou J, Huang J H, et al. HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification[J]. J Neural Eng, 2020, 17(1): 016025.
[6]Lawhern V J, Solon A J, Waytowich N R. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. J Neural Eng, 2018, 15(5): 056013.
[7]Tabar Y R, Halici U. A novel deep learning approach for classification of EEG motor imagery signals[J]. J Neural Eng, 2017, 14(1): 016003.
[8]何群, 杜硕, 王煜文. 基于变分模态分解与深度信念网络的运动想象分类识别研究[J]. 计量学报, 2020, 41(1): 90-99.
He Q, Du S, Wang Y W. The Classification of EEG Induced by Motor Imagery Based on Variational Mode Decomposition and Deep Belief Network [J]. Acta Metrologica Sinica, 2020, 41(1): 90-99.
[9]杜义浩, 刘兆军, 付子豪. 基于混合迁移学习的运动想象分类算法研究及其在脑机接口中的应用[J]. 计量学报, 2021, 42(5): 629-637.
Du Y H, Liu Z J, Fu Z H. Motion Imagery Classification Algorithm Research Based on Hybrid Transfer Learning and Application in Brain-computer Interface[J]. Acta Metrologica Sinica, 2021, 42(5): 629-637.
[10]Chaurasiya R K, Londhe N D, Ghosh S. Binary DE-based channel selection and weighted ensemble of SVM classification for novel brain-computer interface using Devanagari script-based P300 speller paradigm[J]. Int J Hum-Comput Int, 2016, 32(11): 861-877.
[11]付荣荣, 田永胜, 鲍甜恬. 基于稀疏共空间模式和Fisher判别的单次运动想象脑电信号识别方法[J]. 生物医学工程学杂志, 2019, 36(6): 911-916.
Fu R R, Tian Y S, Bao T T. Recognition of single motion imagery Eeg Signals based on sparse common space model and Fishers criterion [J]. J Biomed Eng, 2019, 36(6): 911-916. [12]Arvaneh M, Guan C, Kai K A, et al. Spatially sparsed Common Spatial Pattern to improve BCI performance[C]// Arvaneh M. 2011 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Prague: IEEE-Verlag, 2011: 2412-2415.
[13]Blankertz B, Dornhege G, Krauledat M, et al. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects[J]. Neuroimage, 2007, 37(2): 539-550.
[14]于向洋, 罗志增. 基于小波系数非线性连续函数衰减的脑电信号去噪[J]. 计量学报, 2017, 38(6): 754-757.
Yu X Y, Luo Z Z. EEG signal denoising based on a wavelet nonlinear continuous function [J]. Acta Metrologica Sinica, 2017, 38(6): 754-757.
[15]Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform[J]. IEEE T Signal Proces, 1996, 44(4): 998-1001.
[16]Klambauer G, Unterthiner T, Mayr A, et al. Self-normalizing neural networks[C]//31st Conference on Neural Information Processing Systems, Long Beach, CA, USA. 2017: 971-980.
[17]Zhang Y, Xing K S, Bai R X, et al. An enhanced convolutional neural network for bearing fault diagnosis based on time-frequency image[J]. Measurement, 2020, 157(99): 107667.
[18]Chang H L, Yang J M. Genetic-based feature selection for efficient motion imaging of a brain-computer interface framework[J]. J Neural Eng, 2018, 15(5): 056020. 1-056020. 12.
[19]Xu F Z, Zheng W F, Shan D R, et al. Decoding spectro-temporal representation for motor imagery recognition using ECoG-based brain-computer interfaces[J]. J Integr Neurosci. 2020, 19(2): 259-272.