Modeling and Simulation Analysis of Transformer Hot Spot Temperature Based on Multi Physical Field Coupling and Temperature Rise Characteristics
XU Jing1,2,LIU Shu-xin1
1. Shenyang University of Technology, Shenyang, Liaoning 110870, China
2. Electric Power Research Institute of State Grid Liaoning Electric Power Co., Ltd., Shenyang, Liaoning 110006, China
Abstract:The research on the temperature rise characteristics of transformer, especially the hot spot temperature measurement, is helpful to master the operation state of transformer, so as to avoid the occurrence of thermal fault and guide the dynamic capacity increase of transformer. Aiming at the improvement of the existing hot spot temperature calculation method, a temperature rise model of oil immersed transformer based on multi physical field coupling is proposed. Taking 500kV oil immersed transformer as an example, the thermal characteristics of transformer are analyzed by using the principle of energy conservation. The mathematical and physical models of temperature field and flow field of transformer are established. The temperature rise characteristics, physical parameters and material characteristics of transformer are analyzed. The fluid solid thermal coupling temperature field calculation method is used for simulation calculation. Through simulation calculation and analysis, it has a deeper understanding of the specific distribution position and value of hot spot temperature.The accuracy of the mentioned method is 4% higher than that calculated by empirical formula, it provides a new calculation idea for the calculation of transformer hot spot temperature.
许静,刘树鑫. 基于多物理场耦合及温升特性研究的变压器热点温度建模与仿真分析[J]. 计量学报, 2022, 43(2): 242-249.
XU Jing,LIU Shu-xin. Modeling and Simulation Analysis of Transformer Hot Spot Temperature Based on Multi Physical Field Coupling and Temperature Rise Characteristics. Acta Metrologica Sinica, 2022, 43(2): 242-249.
[1]GB/T1094.7—2008 电力变压器第7部分:油浸式电力变压器负载导则 [S]. 北京: 中国标准出版社, 2008.
[2]Radakovic Z, Maksimovic S. Non-stationary thermal model of indoor transformer stations[J]. Electrical Engineering, 2002, 84(2): 109-117.
[3]贾超, 蔡杰, 熊朝晖. 不同传热方式下温度传感器动态特性研究[J]. 计量学报, 2020, 41(5): 563-566.
Jia C, Cai J, Xiong Z H. Study on dynamic characteristics of temperature sensors under different heat transfer modes[J]. Acta Metrological Sinica, 2020, 41(5): 563-566.
[4]Mechkov E, Tzeneva R, Mateev V, et al. Thermal analysis using 3D FEM model of oil-immersed distribution transformer[C]//19th International Symposium on Electrical Apparatus and Technologies (SIELA). Bourgas, BULGARIA, 2016.
[5]张喜乐, 何松坡, 王建民, 等. 换流变压器绕组损耗及热点温升的仿真研究[J]. 变压器, 2019, 56(7): 24-28.
Zhang X L, He S P, Wang J M, et al. Numerical S imulation of winding Loss and Hot Spot Temperature Rise for Converter Transformer[J]. Transformer, 2019, 56(7): 24-28.
[6]国家电网公司技术标准—110(66)kV~500kV油浸式变压器(电抗器)运行规范[S].
[7]王海涛, 董亮, 孙云飞. 绕组温控器热模拟参数校准探讨[J]. 轻工标准与质量, 2017, (5): 43-44.
Wang H T, Dong L, Sun Y F. Discussion on thermal si mulation parameter calibration of winding thermostat[J]. Standard & Quality of Light Industry, 2017,(5): 43-44.
[8]陈智军, 韩超, 陈涛, 等. 基于人工神经网络的乐甫波 液体密度粘度并行检测研究[J]. 计量学报, 2017, 38(6): 721-724.
Chen Z J, Han C, Chen T, et al. Research on parallel measurement of liquid density and viscosity using love wave based on artificial neural networks[J]. Acta Metrological Sinica, 2017, 38(6): 721-724.
[9]Liu X M, Yang Y M, Yang F, et al. Numerical research on the losses characteristic and hot-spot temperature of laminated core joints in transformer[J]. Applied Thermal Engineering, 2017, (110): 49-61.
[10]骆小满, 阮江军, 邓永清. 基于多物理场计算和模糊神经网络算法的变压器热点温度反演[J]. 高电压技术, 2020, 46(3): 860-866.
Luo X M, Ruan J J, Deng Y Q, et al. Transformer Hot-spot Temperature Inversion Based on Multi-physics Calculation and Fuzzy Neural Network Algorithm[J]. High Voltage Engineering, 2020, 46(3): 860-866.
[11]丁玉琴, 张乔根, 高萌, 等. 油浸式配电变压器分布式热路模型[J]. 高电压技术, 2019, 45(3): 968-974.
Ding Y Q, Zhang Q G, Gao M, et al. Distributed ther-mal circuit model of oil-immersed distribution transformers[J]. High Voltage Engineering, 2019, 45(3): 968-974.
[12]苑翼飞, 赵振刚, 罗川, 等. 油浸式变压器绝缘纸热阻的温度特性[J]. 高电压技术, 2019, 45(6): 1754-1761.
Yuan Y F, Zhao Z G, Luo C, et al. Temperature char-acteristics of thermal resistance of insulating paper for oil immersed transformer[J]. High Voltage Engineering, 2019, 45(6): 1754-1761.
[13]许静, 李正文, 李光, 等. 物联网模式下变压器温控器远程测控系统设计与实现方法[J]. 计量学报, 2019, 40(z1): 140-144.
Xu J, Li Z W, Li G, et al. Design and realization of remote measurement and control system of transformer temperature controller in internet of things mode[J]. Acta Metrological Sinica, 2019, 40(z1): 140-144.
[14]郑玮, 杨振华, 向明东. 在液槽中测试热电偶不均匀性方法探索[J]. 计量学报, 2013, 34(4): 356-359.
Zheng W, Yang Z H, Xiang M D, et al. Study of inhomogenetity test on thermocouple in liquid bath[J]. Acta Metrological Sinica, 2013, 34(4): 356-359.
[15]贾丹平,赵璐,皇甫丽影. 变压器绕组热点温度监测技术的研究[J]. 计量学报, 2022, 43(2): 235-241.
Jia D P,Zhao L,Huangfu L Y. Research on Hot Spot Temperature Monitoring Technology of Transformer Winding[J]. Acta Metrological Sinica,2022, 43(2): 235-241.
[16]陈伟根, 滕黎, 刘军, 等. 基于遗传优化支持向量机的变压器绕组热点温度预测模型[J]. 电工技术学报, 2014, 29(1): 44-51.
Chen W G, Teng L, Liu J, et al. Prediction model of trans-former winding hot spot temperature based on genetic optimization support vector machine[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 44-51.