Abstract:A surface measurement method based on reverse coaxial mode for large aperture plane optical elements is proposed. It combines the reverse coaxial line-scanning measurement mode of dual displacement sensors with three-flat test technology of multiple angle rotation. It effectively expands the measurement aperture of plane optical elements with the help of linear long guide rails. At the same time, it does not need to use a standard flat crystal during the measurement process, which can avoid introducing the uncertainty component of the reference flat of the standard plane crystal. The measurement results are directly traceable to the laser wavelength reference. The surface measurement of three 400mm diameter optical plane crystals is carried out using the measurement method, and the feasibility of the measurement method is verified through experiments.
[1]邓学伟. “神光-Ⅲ”主机装置研制及其性能[C] //中国工程物理研究院科技年会. 成都, 中国, 2017: 137-147.
[2]邵建达, 戴亚平, 许乔. 惯性约束聚变激光驱动装置用光学元器件的研究进展[J]. 光学精密工程, 2016, 24(12): 2889-2895.
Shao J D, Dai Y P, Xu Q. Progress on optical components for ICF laser facility[J]. Optics and Precision Engineering, 2016, 24(12): 2889-2895.
[3]黄金勇, 赵恒, 胡庆, 等. 大口径平面光学元件波前梯度数控抛光[J]. 光学精密工程, 2019, 27(7): 1473-1480.
Huang J Y, Zhao H, Hu Q, et al. Large aperture optical element wavefront gradient controlled by computer numerical controlled polishing[J]. Optics and Precision Engineering, 2019, 27(7): 1473-1480.
[4]侯晶, 王洪祥, 陈贤华, 等. 大口径平面光学元件的磁流变加工[J]. 光学精密工程, 2016, 24(12): 3054-3060.
Hou J, Wang H X, Chen X H, et al. Magnetorheological processing for large aperture plane optical elements[J]. Optics and Precision Engineering, 2016, 24(12): 3054-3060.
[5]Deck L L, Soobitsky J A. Phase-shifting via wavelength tuning in very large aperture interferometers[J].Proceedings of Spie the International Society for Optical Engineering, 1999, 3782: 432-442.
[6]GB/T 2831-2009, 光学零件的面形偏差[S]. 2009.
[7]孟诗, 刘世杰, 陈磊, 等. 光学面形绝对测量方法仿真和实验研究[J]. 激光与光电子学进展, 2018, 55(5): 222-230.
Meng S, Liu S J, Chen L, et al. Simulation and Experimental Study of Absolute Measurement Method for Optical Surface[J]. Laser & Optoelectronics Progress, 2018, 55(5): 222-230.
[8]Ehret G, Schulz M, Stavridis M, et al. Deflectometric systems for absolute flatness measurements at PTB[J]. Measurement Science and Technology, 2012, 23(9): 2910-2916.
[9]Ehret G, Schulz M, Baier M, et al. Optical measurement of absolute flatness with the deflectometric measurement systems at PTB[J]. Journal of Physics: Conference Series, 2013, 425(15): 1-4.
[10]Schulz M. Alignment methods for ultraprecise deflectometric flatness metrology[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8082(1): 1-8.
[11]郭仁慧. 近红外大口径波长移相干涉仪关键技术及应用研究[D]. 南京: 南京理工大学, 2013.
[12]Schulz G, Schwider J. Precise measurement of planeness[J]. Applied Optics, 1967, 6(6): 1077-1084.
[13]康岩辉, 王冰鹤, 崔京远, 等. 基于多角度旋转的高精度平晶测量[J]. 计量学报, 2017, 38(z1): 25-28.
Kang Y H, Wang B H, Cui J Y, et al. High Precision Optical-flat Measurement Based on Multiple Angle Rotation Method[J]. Acta Metrologica Sinica, 2017, 38(z1): 25-28.
[14]高飞, 李晋惠, 田爱玲, 等. 基于Zernike多项式拟合三平面互检的误差分析[J]. 光子学报, 2017, 46(9): 187-194.
Gao F, Li J H, Tian A L, et al. Error Margin Analysis of Three-flat Test Based on Zernike Polynomials Fitting[J]. Acta Photonica Ica, 2017, 46(9): 187-194.
[15]黄元申, 吕昊宇, 曾媛, 等. 绝对平面检测方法的研究进展[J]. 光学仪器, 2018, 40(1): 72-77.
Huang Y S, Lv H Y, Zeng Y, et al. Research progress of absolute flatness testing[J]. Optical Instruments, 2018, 40(1): 72-77.
[16]Griesmann U. Three-flat test solutions based on simple mirror symmetry[J]. Applied Optics, 2006, 45(23): 5856-5865.
[17]Vannoni M, Molesini G. Iterative algorithm for three flat test[J]. Optics Express, 2007, 15(11): 6809-6816.
[18]王青, 顾洋. 平面度计量——点线面之间的量值传递与控制[J]. 计量学报, 2019, 40(2): 189-195.
WANG Q, GU Y. Flatness Metrology—Value Transfer and Control of Point, Section and Surface[J]. Acta Metrologica Sinica, 2019, 40(2): 189-195.
[19]毕立恒, 朱彦齐. 基于分群粒子群算法的平面度误差评定研究[J]. 计量学报, 2019, 40(6): 980-985.
BI L H, ZHU Y Q. Flatness Error Evaluation Based on Grouped Particle Swarm Optimization Algorithm[J]. Acta Metrologica Sinica, 2019, 40(6): 980-985.
[20]JJF 1059. 2-2012 用蒙特卡洛法评定测量不确定度[S]. 2012.
[21]江文松, 王中宇, 罗哉, 等. 基于蒙特卡罗法的冲击力溯源系统不确定度评定[J]. 计量学报, 2020, 41 (4): 448-455.
Jiang W S, Wang Z Y, Luo Z, et al. Uncertainty Evaluation on the Traceable Measurement System of the Impact Force Based on a Monte Carlo Method[J]. Acta Metrologica Sinica, 2020, 41 (4): 448-455.