1. Changzhou Institute of Inspection Testing Standardization and Certification, Changzhou, Jiangsu 213164, China
2. National Institute of Metrology, Beijing 100029, China
3. Zhengzhou Institute of Metrology,Zhengzhou, Henan 450001, China
Abstract:A method for measuring the specific heat capacity of metal samples by CW laser heating was proposed. Heat transfer model of finite size specimen and the quasi-steady state measurement model under continuous heating were established and verified by numerical simulation with COMSOL Multiphysics software. Considering the heat loss of contact heat transfer, convection heat transfer and heat radiation in the actual measurement process, the heat loss of the measurement model was modified. The simulation results show that the deviation of the modified model is less than ±0.81% when the comprehensive surface heat transfer coefficient is less than 80W/(m2·K). The experimental measurement device was set up, 532nm CW laser was used as heating source. Titanium alloy TC4, stainless steel 316L, steel 45, aluminum alloy 7075 and copper T2 samples were processed and drilled micropore on each sample. The heated surfaces of the samples were coated with graphite and the temperature rise inside the samples was measured by using a very fine K-type thermocouple. The specific heat capacity of copper T2 was used to calibrate the system parameters. The experiment results show that the repeatability of measurement is better than 0.91%, the relative deviation between the average value of the measurement results of each metal sample and the reference value of the data manual is less than ±3.1%. The relative expanded uncertainty is evaluated to be U=3.66%(k=2).
[1]王庆霞, 胡晓伟, 庞静珠, 等. 基于切削力实时测量的弱刚性件加工变形控制 [J]. 仪器仪表学报, 2019, 40(2): 223-232.
Wang Q X, Hu X W, Pang J Z, et al. Deformation control in weak rigidity workpiece milling based on real-time cutting force measuring [J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 223-232.
[2]刘平政, 宋凯, 宁宁, 等. 飞机紧固件孔周裂纹检测远场涡流传感器设计及优化[J]. 仪器仪表学报, 2019, 40(6): 1-8.
Liu P Z, Song K, Ning N, et al. Design and optimization of remote field eddy current sensor for crack detection around the hole of aircraft fasteners [J]. Chinese Journal of Scientific Instrument, 2019, 40(6): 1-8.
[3]Junaid M, Cheema T A, Haleem H, et al. Effects of thermal materials properties on precision of transient temperatures in pulsed laser welding of Ti6Al4V alloy [J]. Proc IMechE Part C: J Mechanical Engineering Science, 2019, 233(9): 3170-3181.
[4]Dinger G. Dynamic modeling and simulation of the screwing behavior of thread forming screws [J]. Journal of Manufacturing Processes, 2015, 20: 374-379.
[5]A. S. M. I. H. ASM handbook volume 02: Properties and selection nonferrous alloys and special-purpose materials [M]. 10th Edition, ASM International, Materials Park, 1990.
[6]胡芃, 陈则韶. 量热技术和热物性测定 第2版 [M]. 合肥: 中国科学技术大学出版社, 2009.
[7]谭真, 郭光文. 工程合金热物性 [M]. 北京: 冶金工业出版社, 1994.
[8]Jomaa W, Songmene V, Bocher P. An hybrid approach based on machining and dynamic tests data for the identification of material constitutive equations [J]. Journal of Materials Engineering and Performance, 2016, 25(3): 1010-1027.
[9]Hammerschmidt U, Sabuga W. Transient hot strip (THS) method: uncertainty assessment [J]. International Journal of Thermophysics, 2000, 21(1): 217-247.
[1]胡芃, 陈则韶. 量热技术和热物性测定[M].2版. 合肥: 中国科学技术大学出版社, 2009.
[2]谭真, 郭光文. 工程合金热物性 [M]. 北京: 冶金工业出版社, 1994.
[3]周逸, 林鸿, 冯晓娟, 等. 石墨烯及其复合材料导热系数测量的研究进展 [J]. 计量学报, 2020, 41(2): 159-169.
Zhou Y, Lin H, Feng X J, et al. Research the Progresses on Measurement of Thermal Conductivity of Graphene and Graphenes Composites [J]. Acta Metrologica Sinica, 2020, 41(2): 159-169.
[4]孙建平, 张金涛, 邱萍, 等. 高精密自动绝热量热计的实验研究与分析 [J]. 计量学报, 2006, 27(4): 331-334.
Sun J P, Zhang J T, Qiu P, et al. The experimental study and analysis of a high precision automatic adiabatic calorimeter [J]. Acta Metrologica Sinica, 2006, 27(4): 331-334.
[5]李佳, 王灿, 王海峰, 等. 中温固体比热容测量基准的研究进展 [J]. 计量学报, 2016, 37(4): 384-389.
Li J, Wang C, Wang H F, et al. Research progress of primary heat capacity standard for medium temperature [J]. Acta Metrologica Sinica, 2016, 37(4): 384-389.
[6]ASTM E 1461-01 Standard Test Method for Thermal Diffusivity by the Flash Method [S].
[7]张琳, 杜斌, 鲁燕萍. 激光热导仪准确测量比热容的方法研究 [J]. 真空电子技术, 2015(2): 41-45.
Zhang L, Du B, Li Y P. Study on the method of accurate measurement of specific heat using laser flash apparatus [J]. Vacuum Electronics, 2015(2): 41-45.
[8]Parker W J, Jenkins R J, Butler C P, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity [J]. Journal of Applied Physics, 1961, 32(9): 1679-1684.
[9]Xue J, Taylor R. An evaluation of specific heat measurement methods using the laser flash technique [J]. International Journal of Thermophysics, 1993, 14(2): 313- 320.
[10]杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
[11]Carslaw H S, Jager J C. Conduction of Heat in Solids [M]. New York: Oxford University Press, 1959.
[12]吴雪峰. 激光加热辅助切削氮化硅陶瓷技术的基础研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.
[13]Steven R, Boerio-goates J. Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry [J]. The Journal of Chemical Thermodynamics, 2004, 36(10): 857-863.
[14]李立碑, 孙玉福. 金属材料物理性能手册 [M]. 北京: 机械工业出版社, 2011.
[15]ASM. Metals handbook,Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials [M]. Ohio, USA:ASM International,1990.
[16]张丝雨. 最新金属材料牌号、性能、用途及 中外牌号对照速用速查实用手册 [M]. 北京: 中国科技文化出版社, 2005.
[17]Kenneth C M. Recommended values of thermophysical properties for selected commercial alloys [M]. Cambridge, United Kingdom:Woodhead Publishing,2002.
[18]Sabbah R, Xu W A, Chickos J S, et al. Reference materials for calorimetry and differential thermal analysis [J]. Thermochimica Acta, 1999, 331(2): 93-204.
[19]White G K, Collocott S J. Heat Capacity of Reference Materials: Cu and W [J]. Journal of Physical and Chemical Reference Data, 1984, 13(4): 1251-1257.
[20]文佳佳, 张添, 陆燕. 4J29可伐合金材料低温热物性及弹性模量测试 [J]. 低温工程, 2016(6): 43-47.
Wen J J, Zhang T, Lu Y. Measurements of cryogenic thermophysical properties and mechanical property for Kovar 4J29 [J]. Cryogenics, 2016(6): 43-47.
[21]王丽芳, 孙亚新, 朱刚贤, 等. 激光熔覆316L不锈钢残余应力工艺参数的优化模拟 [J]. 应用激光, 2019, 39(3): 376-380.
Wang L F, Sun Y X, Zhu G X, et al. Optimization simulation of process parameters on the residual stress in 316L stainless steel by laser cladding [J]. Applied Laser, 2019, 39(3): 376-380.
[22]Dinger G. Dynamic modeling and simulation of the screwing behavior of thread forming screws [J]. Journal of Manufacturing Processes, 2015, 20:374-379.
[23]陈凌峰. 标准不确定度A类评定中极差法的深入讨论[J]. 计量学报, 2019, 40(2): 347-352.
Chen L F. The Further Discussion of the Range Method in the Type A Evaluation of Standard Uncertainty[J]. Acta Metrologica Sinica, 2019, 40(2): 347-352.