1. MOE Key Laboratory of Optoelectronic Imaging Technology and System, Beijing Institute of Technology, Beijing 100081, China
2. Xi′an Institute of Applied Optics, Xi′an, Shannxi 710065, China
Abstract:A kind of entangled single-photon source was proposed to meet the requirements of the measurement and traceability of very weak energy level from a single-photon to femto-joule. The heralded entangled photon pairs at 795 nm wavelength were generated through four wave mixing based on the cold atoms. The narrowband paired and high-quality single-photon source was obtained through the suppression of background radiance and real-time compensation, high precision laser frequency stabilization, timing pulse precise synchronization. On this basis, the calibration methods of entangled photon source parameter were studied. The further establishment of the new optical radiation traceability system based on the quantum basic standards were considered, which is to reduce the measurement uncertainty of very weak optical radiation parameters.
俞兵,金伟其,袁林光,杨鸿儒,吴磊,马世帮,尤越,陈娟. 宣布式纠缠单光子源及量子化光辐射量值溯源体系研究[J]. 计量学报, 2021, 42(6): 689-693.
YU Bing,JIN Wei-qi,YUAN Lin-guang,YANG Hong-ru,WU Lei,MA Shi-bang,YOU Yue,CHEN Juan. Heralded Entangled Single-photon Source and Research on the Traceability System of the Optical Radiation Based on the Quantization. Acta Metrologica Sinica, 2021, 42(6): 689-693.
[1] Chunnilal J C, Degiovanni I P, Kueck S, et al. Metrology of single-photon sources and detectors: a review[J]. Optical Engineering, 2014, 53(8): 081910-1-17.
[2] 李岩. 基于准相位匹配晶体的非经典光源的制备[D]. 合肥: 中国科学技术大学, 2016.
[3] 盛文阳. 基于参量下转换的单光子源设计和性能测试[D]. 合肥: 中国科学技术大学, 2019.
[4] 刘洪雨. 自发参量下转换产生的光子源的波粒二象性及其量子特性研究[D]. 太原: 山西大学, 2013.
[5] 宋媛媛, 陈鼎, 丛爽. 自发参量下转换制备纠缠光子对的特性[J]. 激光与光电子学进展, 2019, 56(4): 253-264.
Song Y Y, Chen D, Cong S. Property of entangled photon pairs generated via spontaneous parametric down conversion[J]. Laser & Optoelectronics Progress, 2019, 56(4): 253-264.
[6] 樊碧璇. 基于腔内四波混频的单光子源产生和应用[D]. 华东师范大学, 2010.
[7] 李健军, 郑小兵, 张伟. 基于纠缠光子方法测量光电探测器量子效率的研究[J]. 应用光学, 2007,28(2): 216-220.
Li J J, Zheng X B, Zhang W. Quantum-efficiency measurement of photodetectors based on entangled photons[J]. Journal of Applied Optics, 2007,28(2): 216-220.
[8] Jennewein T, Barbieri M, White A G. Single-photon device requirements for o perating linearoptics quantum computing outside the post-selection basis[J]. Journal of Modern Optics, 2011,58(3-4): 276-287.
[9] 颜辉, 何君钰, 廖开宇, 等. 宣布式可控波形单光子的产生和应用[J]. 中国科学: 信息科学, 2014, 44(3): 410-424.
Yan H, He J Y, Liao K Y, et al. Heralded narrowband single photon with controllable waveform: generation and application[J]. Science China: Information China, 2014, 44(3): 410-424.
[10] 韩枝光. 冷原子系统及窄线宽光子对的产生与调控研究[D]. 上海: 华东师范大学, 2017.
[11] 原浩翔, 葛伟, 田龙, 等. 冷原子系综中量子关联光子对的产生[J]. 量子光学学报, 2016, 22(3): 235-240.
Yuan H X, Ge W, Tian L, et al. The generation of quantum correlated photon pairs in cold atomic ensembl[J]. Joural ofQuantum Optics , 2016, 22(3): 235-240.
[12] Du S, Wen J M, Rubin M H, et al. Four-wave mixing and biphoton generation in a two-level systems[J]. Phys Rev Lett, 2007, 98, 053601.
[13] Du S, Kolchin P, Belthangady C, et al. Subnatural linewidth biphotons with controllable temporal length[J]. Phys Rev Lett, 2008, 100(18): 183603.
[14] Zhao L W, Guo X X, Liu C, et al. Photon pairs with coherence time exceeding 1 μs[J]. Optica, 2014, 1(2): 84-88.
[15] 杨鸿儒, 崔东旭. 国防光学计量技术研究进展[J]. 应用光学, 2016, 37 (11): 8-17.
Yang H R, Cui D X. Progress in national defense optical metrology technology[J]. Journal of Applied Optics, 2016, 37 (11): 8-17.
[16] 马爱文, 曲兴华. SI基本单位量子化重新定义及其意义[J]. 计量学报, 2020, 41(2): 129-133 .
Ma A W, Qu X H. The quantized redefinition of the SI and its signification[J]. Acta Metrological Sincia, 2020, 41(2): 129-133.