Abstract:Up to now, many intelligent algorithms have been used in parameter identification of photovoltaic cell model, but most of them are prone to local optimum and the convergence speed is slow. Lion swarm optimization is a novel intelligent algorithm proposed in recent years, and it also has the problems mentioned above. An improved lion swarm algorithm based on chaotic search strategy (CLSO) was proposed. By introducing chaotic sequence, adaptive parameter and tent chaotic search strategy, the deficiency of the lion swarm optimization was remedied. Firstly,the algorithm was applied to the parameter identification of single-diode model and double-diode model of photovoltaic cells, compared with the results of other five algorithms, which proved the effectiveness and superiority of this algorithm in the parameter identification of photovoltaic cells. Besides, experiments were carried out under different irradiance and different weather types, exploring the influence with changing external environment on model parameters, which further verify the effectiveness and practicability of the algorithm.
[1]周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904.
Zhou X X, Chen S Y, Lu Z X, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904.
[2]张俊超, 熊利民, 孟海凤, 等. 标准太阳电池标定值计量方法研究[J]. 计量学报, 2017, 38(2): 171-174.
Zhang J C, Xiong L M, Meng H F, et al. Research on the calibration method of reference solar cell[J]. Acta Metrologica Sinica, 2017, 38(2): 171-174.
[3]韩伟, 王宏华, 陈凌, 等. 光伏组件参数拟合及输出特性研究[J]. 电力自动化设备, 2015, 35(9): 100-107.
Han W, Wang H H, Chen Ling, et al. Research on parameter fitting and output characteristics of PV module[J]. Electric Power Automation Equipment, 2015, 35(9): 100-107.
[4]傅望, 周林, 郭珂, 等. 光伏电池工程用数学模型研究[J]. 电工技术学报, 2011, 26(10): 211-216.
Fu W, Zhou L, Guo K, et al. Research on engineering analytical model of solar cells[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 211-216.
[5]刘浩然, 崔静闯, 卢泽丹, 等. 一种改进的雁群扩展粒子群算法研究[J]. 计量学报, 2019, 40(3): 498-504.
Liu H R, Cui J C, Lu Z D, et al. Study on an improved extended PSO algorithm based on geese flight[J]. Acta Metrologica Sinica, 2019, 40(3): 498-504.
[6]吴忠强, 杜春奇, 张伟, 等. 基于改进布谷鸟搜索算法的永磁同步电机参数辨识[J]. 计量学报, 2017, 38(5): 631-636.
Wu Z Q, Du C Q, Zhang W, et al. The Parameter identification of permanent magnet synchronous motor based on improved cuckoo search algorithm[J]. Acta Metrologica Sinica, 2017, 38(5): 631-636.
[7]吴忠强,申丹丹,尚梦瑶,等. 基于改进蝗虫优化算法的光伏电池模型参数辨识[J]. 计量学报, 2020, 41(12): 1536-1543.
Wu Z Q,Shen D D,Shang M Y,et al. Parameter Identification of Photovoltaic Cell Model Based on Improved Grasshopper Optimization Algorithm[J].Acta Metrologica Sinica, 2020, 41(12): 1536-1543.
[8]吴忠强,刘重阳. 基于IHHO算法的光伏电池工程模型的参数辨识[J]. 计量学报, 2021, 42(2): 221-227.
Wu Z Q,Liu C Y. Parameter Identification of Photovoltaic Cell Engineering Model Based on IHHO Algorithm[J]. Acta Metrologica Sinica, 2021, 42(2): 221-227.
[9]Lei G, Zhou M, Yize S, et al. Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm[J]. Energy Conversion and Management, 2016, 108: 520-528.
[10]Wu Z Q, Yu D Q, Kang X H. Parameter identification of photovoltaic cell model based on improved ant lion optimizer[J]. Energy Conversion and Management, 2017, 151: 107-15.
[11]Xiong G, Zhang J, Shi D, et al. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm[J]. Energy Conversion and Management, 2018, 174: 388-405.
[12]Rabeh A, Abdelkader A, Ali A H, et al. An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models[J]. Energy Conversion and Management, 2019, 179: 362-372.
[13]刘生建, 杨艳, 周永权. 一种群体智能算法—狮群算法[J]. 模式识别与人工智能, 2018, 31(5): 431-441.
Liu S J, Yang Y, Zhou Y Q. A Swarm intelligence algorithm-lion swarm optimization[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(5): 431-441.
[14]邓泽喜, 刘晓冀. 基于Tent混沌搜索的差分进化算法及其应用[J]. 计算机仿真, 2013, 30(6): 304-307.
Deng Z X, Liu X Y. Differential evolution algorithm based on tent chaos search and its application[J]. Computer Simulation, 2013, 30(6): 304-307.
[15]袁晓玲, 陈宇. 自适应权重粒子群算法在阴影光伏发电最大功率点跟踪(MPPT)中的应用[J]. 中国电力, 2013, 46(10): 85-90.
Yuan X L, Chen Y. Applications of adaptive particle swarm optimization algorithm to MPPT of shadow photovoltaic power generation[J]. Electric Power, 2013, 46(10): 85-90.
[16]胡克用, 胥芳, 艾青林, 等. 自适应遗传算法在光伏发电系统中的应用[J]. 光子学报, 2016, 45(1): 0135001.
Hu K Y, Xu F, Ai Q L, et al. Adaptive genetic aglorithm in the application of photovoltaic power generation system[J]. Acta Photonica Sinica, 2016, 45(1): 0135001.
[17]康童, 姚建刚, 金敏, 等. 采用改进型SOS算法的光伏组件模型参数辨识[J]. 计算机应用研究,2020,37(4):1034-1042.
Kang T, Yao J G, Jin M, et al. Parameter identification of photovoltaic module models using improved symbiotic organisms search algorithm[J]. Application Research of Computers2020,37(4):1034-1042.
[18]徐岩, 高兆, 朱晓荣. 基于混合蛙跳算法的光伏阵列参数辨识方法[J]. 太阳能学报, 2019, 40(7): 1903-1911.
Xu Y, Gao Z, Zhu X R. Parameter identification method of photovoltaic array based on shuffled frog leaping algorithm[J]. Acta Energiae Solaris Sinica, 2019, 40(7): 1903-1911.