Abstract:To meet the requirements for dynamic characteristic calibration of dynamically tuned gyro flexural components in national defense and aerospace engineering, a set of dynamic characteristic calibration device for dynamically tuned gyro flexural components was researched and built. After the calibration device were verified through several tests, and the calibration results were compared on the regional highest measurement standard device.The experimental verification results showed that the calibration device is able to meet the calibration requirements for the dynamic deflection characteristics of dynamically tuned gyro.
[1]秦永元. 惯性导航[M]. 北京: 科学出版社, 2006: 21-26.
[2]周百令. 动力调谐陀螺仪设计与制造[M]. 南京: 东南大学出版社, 2002.
[3]严恭敏, 李四海, 秦永元. 惯性仪器测试与数据分析[M]. 北京: 国防工业出版社, 2012: 1-6.
[4]Heiko F, Jameswylde T H, Marek K. Simulation, Dynamic Testing and Design of Micromachined Flexible Joints[J]. Journal of Micromechanics and Microengineering, 2001, 11(2): 209-216.
[5]杨定新, 陶俊勇, 陶利民. 基于模型参数辨识的动力调谐陀螺仪故障诊断方法[J]. 国防科技大学学报, 2000, 22(5): 87-92.
Yang D X, Tao J Y, Tao L M. The Diagnosis of DTG Based on Parameter Estimation Method[J]. Journal of National University of Defense Technology, 2000, 22(5): 87-92.
[6]秦永元. 动力调谐陀螺挠性接头力学参数动态测试的频域辨识法[J]. 中国惯性技术学报, 1998(3): 39-43.
Qin Yongyuan. Dynamically Identifying Mechanical Parameters of DTG Flexture Joint in Frequency Domain[J]. Journal of Chinese Inertial Technology, 1998(3): 39-43.
[7]黄垚, 薛梓, 乔丹. 光学陀螺测角仪计量性能测试[J]. 计量学报, 2017, 38(S1): 61-64.
Huang Y, Xue Z, Qiao D. The Metrological Performance Test of Optical Gyroscope Angle Measuring Instrument[J]. Acta Metrologica Sinica, 2017, 38(S1): 61-64.
[8]鲁敏, 胡红波. 基于正弦激励的压电加速度计模型参数辨识[J]. 计量学报, 2020, 41(1): 55-59.
Lu M, Hu H B. Calibration of Piezoelectric Accelerometers Dynamic Characteristics using Primary Vibration Calibration[J]. Acta Metrologica Sinica, 2020, 44(1): 55-59.
[9]徐新平, 王锐, 袁静, 等. 惯性导航设备升沉数据测试系统研究[J]. 计量学报, 2020, 41(4): 501-504.
Xu X P, Wang R, Yuan J, et al. Research on Heave Data Test System of Inertial Navigation Equipment[J]. Acta Metrologica Sinica, 2020, 41(4): 501-504.
[10]Xiong L, Zhou Q, Wu Y, et al. New laser excitation method for modal analysis of microstructure[J]. Mechanical Systems and Signal Processing, 2015, (50-51): 227-234.
[11]雷彦华. 低频振动校准系统的关键技术研究与实现[D]. 中国地震局工程力学研究所, 2009.
[12]胡红波, 杨丽峰, 于梅. 零差干涉仪用于振动校准中关键技术的研究[J]. 计量学报, 2018, 39(3): 368-372.
Hu H B, Yang L F, Yu M. Study on Key Technologies of Vibration Calibration Using Homodyne Interferometer[J]. Acta Metrologica Sinica, 2018, 39(3): 368-372.
[13]杨明, 蔡晨光, 刘志华, 等. 基于外差激光干涉法的三轴向振动绝对校准方法研究[J]. 计量学报, 2018, 39(2): 201-206.
Yang M, Cai C G, Liu Z H, et al. Research on the Method of theTriaxial Primary Vibration Calibration Using the Heterodyne Interferometry[J]. Acta Metrolo-gica Sinica, 2018, 39(2): 201-206.
[14]ISO 16063-11 Methods for the calibration of vibration and shock transducers-Part 11: Primary vibration calibration by laser interferometr[S]. 1999.
[15]陈剑, 陶善勇, 王维, 等. 基于周期势函数的自适应二阶欠阻尼随机共振信号增强方法[J]. 计量学报, 2019, 40(4): 681-685.
Chen J, Tao S Y, Wang W, et al. Adaptive Second-order Underdamped Stochastic Resonance Signal Enhancement Method Based on Periodic Potential Function[J]. Acta Metrologica Sinica, 2019, 40(4): 681-685.
[16]许晓红, 倪春锋, 颜晓青. 基于组合辛普森积分的振动测试时域积分方法[J]. 计量学报, 2020, 40(6): 704-709.
Xu X H, Ni C F, Yan X Q. Time Domain Integral Method for Vibration Test Based on Combined Simpson Integral[J]. Acta Metrologica Sinica, 2020, 40(6): 704-709.
[17]时培明, 苏晓, 袁丹真, 等. 基于VMD 和变尺度多稳随机共振的微弱故障信号特征提取方法[J]. 计量学报, 2018, 39(4): 515-520.
Shi P M, Su X, Yuan D Z, et al. A New Feature Extraction Method of Weak Fault Signal Based on VMD and Re-scaling Multi-stable Stochastic Resonance[J]. Acta Metrologica Sinica, 2018, 39(4): 515-520.
[18]刘智敏. 不确定度原理[M]. 北京: 中国计量出版社, 1993.
[19]JJF 1059-1999测量不确定度评定与表示[M]. 北京: 中国计量出版社, 1999.
[20]JJF 1117—2010计量比对[M]. 北京中国计量出版社, 2010.