Abstract:In order to effectively improve the luminous efficiency of GaN-based blue light-emitting diodes, a composite grating GaN-LED structure based on surface plasmon is proposed. Through the theoretical analysis of the excitation mode of surface plasmons and the quantum efficiency of the internal and external LEDs, the principle of the structure to enhance the luminous efficiency of LEDs is explained in detail. The fabrication process of the model is discussed. At the same time, the finite element analysis method is used to optimize the parameters and simulate the structure, thus the radiation power, absorption power and electric field distribution of the structure under the optimal parameters are obtained. The simulation results show that when the wavelength of the emitted light is 460nm, under the optimal parameters, the average electric field radiated into the air of the composite grating LED structure is 38 times that of the single-grating LED structure, which proves that the proposed structure can effectively improve the luminous efficiency of the diode.
李志全,魏文婧. 基于表面等离激元的LED参数优化研究[J]. 计量学报, 2020, 41(9): 1070-1076.
LI Zhi-quan,WEI Wen-jing. Research on Parameter Optimization of LED Based on Surface Plasmons. Acta Metrologica Sinica, 2020, 41(9): 1070-1076.
[1]Mariana S, Jan Gülink, Hamdana G, et al. Vertical GaN Nanowires and Nanoscale Light-Emitting-Diode Arrays for Lighting and Sensing Applications [J]. ACS Applied Nano Materials, 2019, 2 (7): 4133-4142.
[2]姜琳, 刘慧, 闫劲云, 等. LED灯丝筛选方法研究 [J]. 计量学报, 2019, 40 (4): 569-575.
Jiang L, Liu H, Yan J Y, et al. Research on Screening Methods of LED Filament [J]. Acta Metrologica Sinica, 2019, 40 (4): 569-575.
[3]曹珂, 梁超群, 郭瑞民, 等. 衰荡光腔温度控制研究 [J]. 计量学报, 2018, 39 (3): 145-149.
Cao K, Liang C Q, Guo R M, et al. Study on Tempe-rature Control for Ring-Down Cavity[J]. Acta Metrologica Sinica, 2018, 39 (3): 145-149.
[4]Yeh W L, Fang C M, Chiou Y P. Enhancing LED Light Extraction by Optimizing Cavity and Waveguide Modes in Grating Structures [J]. Journal of Display Technology, 2013, 9 (5): 359-364.
[5]Gone H B, Hao X P, Wei X, et al. Enhanced extraction efficiency of red-light-emitting diode via dry-etching GaP using ITO as templates [J]. Journal of Optoelectronics Laser, 2010, 21 (9): 1287-1290.
[6]Purcell E M. Spontaneous Emission Probabilities at Radio Frequencies [J]. Phys Rev, 1995, 69 (11): 839-839.
[7]Okamoto K, Niki I, Shvartser A, et al. Surface plasmon enhanced bright light emission from InGaN/GaN [J]. physica status solidi (a), 2010, 204 (6): 2103-2107.
[8]Okamoto K, Niki I, Shvartser A, et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells [J]. Nature Materials, 2004, 3 (9): 601-605.
[9]Drezet A, Przybilla F, Laux E, et al. Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications [J]. Applied Physics Letters, 2009, 95 (2): 445-464.
[10]Kao C C, Su Y K, Lin C L, et al. Localized Surface Plasmon-Enhanced Nitride-Based Light-Emitting Diode With Ag Nanotriangle Array by Nanosphere Lithography [J]. IEEE Photonics Technology Letters, 2010, 22 (13): 984-986.
[11]Trieu S, Jin X, Ellaboudy A, et al. Top Transmission Grating GaN LED Simulations for Light Extraction Improvement[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 7933: 79331Y-79331Y-11.
[12]Shen K C, Liao C H, Yu Z Y, et al. Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling[J].Journal of Applied Physics,2010,108 (11): 113101-8.
[13]张淏酥, 朱钧, 朱振东, 等. 基于正弦微纳光栅的反射式表面等离激元增强型GaN-LED [J]. 激光与光电子学进展, 2013, 50 (4): 174-179.
Zhang H S, Zhu J, Zhu Z D, et al. Bottom-Emitting Surface-Plasmon-Enhanced GaN-LED Based on the Sinusoidal Nano-Gratings[J]. Laser & Optoelectronics Progress, 2013, 50 (4): 174-179.
[14]赵建伟, 江孝伟, 方晓敏, 等. 金属光栅提高蓝光LED提取效率的研究 [J]. 激光技术, 2019, 43 (1): 62-66.
Zhao J W, Jiang X W, Fang X M, et al. Study on improving the extraction efficiency of blue light LED by metal gratings[J]. Chinese Journal of Lasers, 2019, 43 (1): 62-66.
[15]王振林. 表面等离激元研究新进展 [J]. 物理学进展, 2009, (3): 287-324.
Wang Z L. New progress in surface plasmon research [J]. Progress in Physics, 2009, (3): 287-324.
[16]郝聪霞. 利用表面等离子体增强绿光LED的发光 [D]. 北京: 北京工业大学. 2012.
[17]Rosenblatt D, Sharon A, Friesem A A. Resonant grating waveguide structures [J]. IEEE Journal of Quantum Electronics, 1997, 33 (11): 2038-2059.
[18]Chuang W H, Wang J Y, Yang C C, et al. Differentiating the contributions between localized sur-face plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter [J]. Applied Physics Letters, 2008, 92(13): 153305.
[19]李志全, 刘同磊, 白兰迪, 等. 纳米光栅的表面等离激元增强型GaN-LED [J]. 红外与激光工程, 2018, 47(9): 206-213.
Li Z Q, Liu T L, Bai L D, et al. Surface-plasmon-enhanced GaN-LED based on nano-grating [J]. Infrared and Laser Engineering, 2018, 47 (09): 206-213.
[20]Lu Y C, Chen Y S, Tsai F J, et al. Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor [J]. Applied Physics Letters, 2009, 94 (23): 233113.
[21]Zhang H, Zhu J, Zhu Z, et al. Surface-plasmon-enhanced GaN-LED based on the quasi-symmetrical planar waveguide structure [J]. Optics Communica-tions, 2013, 311 (Complete): 311-316.
[22]Palik E D. Handbook of optical constants of solids II [M]. Boston: Academic Press, 1991: 77-135.
[23]Srivastava S K, Verma R, Gupta B D. Theoretical mod-eling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film [J]. Optics Communications, 2016, 369: 131-137.