Abstract:The image dehazing is researched based on mixed dark channel prior. Firstly, threshold was divided mixed dark channel, mixed dark channel prior was combined with near and far scene, and evaluation function of maximum similarity was obtained fine-tuning coefficient of mixed dark channel prior. Secondly, near scene was used light intensity difference of dark channel of pixel point and region center, and far scene was used expansion and corrosion of pixel. Finally, the algorithm process was given. Experimental simulation shows that the mixed dark channel prior has better visual effect and quantitative analysis indexes than other algorithms.
[1]Wang J B, He N, Zhang L L, et al. Single image dehazing with a physical model and dark channel prior[J]. Neurocomputing, 2015, 149(3): 718-728.
[2]He K M, Sun J, Tang X. Single image haze removal using dark channel prior[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recog-nition Workshops. Washington, DC: IEEE Computer Society, 2011: 1956-1963.
[3]宋颖超, 罗海波, 惠斌, 等. 尺度自适应暗通道先验去雾方法[J]. 红外与激光工程, 2016, 45(9): 92800201-092800212.
Song Y C, Luo H B, Hui B, et al. Haze removal using scale adaptive dark channel prior[J]. Infrared and Laser Engineering, 2016, 45(9): 92800201-092800212.
[4]范风兵, 张红英, 吴斌, 等. 基于雾气深度的快速单幅图像去雾算法[J]. 四川理工学院学报(自然科学版), 2016, 29(2): 30-35.
Fan F B, Zhang H Y, Wu B, et al. Fast single image dehazing based on the fog depth[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2016, 29(2): 30-35.
[5]Liu S L, Rahman M A, Liu S C, et al. Image de-hazing from the perspective of noise filtering[J]. Computers & Electrical Engineering, 2017, 62(8): 345-359.
[6]孙小明, 孙俊喜, 赵立荣, 等. 暗原色先验单幅图像去雾改进算法[J]. 中国图象图形学报, 2014, 19(3): 381-385.
Sun X M, Sun J X, Zhao L R, et al. Improved algorithm for single image haze removing using dark channel prior[J]. Journal of Image Graphics, 2014, 19(3): 381-385.
[7]Narasimhan S G, Nayar S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254.
[8]刘国, 吕群波, 刘扬阳. 基于自适应暗原色的单幅图像去雾算法[J]. 光子学报, 2018, 47(2): 2100011-2100018.
Liu G, Lü Q B, Liu Y Y. Single Image Dehazing Algorithm Based on Adaptive Dark Channel Prior[J]. Acta Photonica Sinica, 2018, 47(2): 2100011-2100018.
[9]陈书贞, 任占广, 练秋生. 基于改进暗通道和导向滤波的单幅图像去雾算法[J]. 自动化学报, 2016, 42(3): 455-465.
Chen S Z, Ren Z G, Lian Q S. Single Image Dehazing Algorithm Based on Improved Dark Channel Prior and Guided Filter[J]. Acta Automatica Sinica, 2016, 42(3): 455-465.
[10]姜德晶, 王树臣, 曾勇, 等. 分割映射的单幅彩色图像去雾方法[J]. 光电子·激光, 2017, (7): 780-787.
Jiang D J, Wang S C, Ceng Y, et al. Single color image dehazing method based on image segmentation[J]. Journal of Optoelectronics·laser, 2017, (7): 780-787.
[11]赵静. 基于自适应阈值改进暗通道先验图像增强技术[J]. 电视技术, 2016, 40(1): 42-46.
Zhao J. Improved method of image dehazing using dark channel prior based on adaptive threshold[J]. Video Engineering, 2016, 40(1): 42-46.
[12]田源. 基于混合远景和近景区域暗通道算法的图像去雾研究[J]. 计量学报, 2019, 40(4): 583-588.
Tian Y. Image Dehazing Based on Near and Far Scene Dark Channel Prior[J]. Acta Metrologica Sinica, 2019, 40(4): 583-588.
[13] 程磊,刘勇军. 基于改进暗通道算法的图像去雾研究[J]. 计量学报, 2019, 40(2): 220-224.
Cheng L, Liu Y J. Image Dehazing Based on Improved Dark Channel Prior Algorithm[J]. Acta Metrologica Sinica, 2019, 40(2): 220-224.
[14]陈清江, 张雪, 柴昱洲. 基于卷积神经网络的图像去雾算法[J]. 液晶与显示, 2019, 34(2): 220-227.
Chen Q J, Zhang X, Chai Y Z. Image defogging algorithms based on multiscale convolution neural network [J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(2): 220-227.
[15] 杨爱萍, 王南, 庞彦伟, 等. 人工光源条件下夜间雾天图像建模及去雾[J]. 电子与信息学报, 2018, 40(6): 1330-1337.
Yang A P, Wang N, Pang Y W, et al. Nighttime Haze Removal Based on New Imaging Model with Artificial Light Sources[J]. Journal of Electronics and Information Technology, 2018, 40(6): 1330-1337
[16]齐永锋,李占华.一种基于多尺度卷积神经网络和分类统计的图像去雾霾方法[J].红外技术,2020,42(2):190-197.
Qi Y F, Li Z H. Image Dehazing Method Based on Multi-scale Convolutional Neural Network and Classification Statistics [J]. Infrared Technology,2020,42(2):190-197.