Abstract:One of the differences between the JJF 1059.1—2012《Evaluation and Expression of Uncertainty in Measurement》 and the GUM is the introduction of the range method in the type A evaluation of standard uncertainty.Under the assumption of normal distribution and uniform distribution,the range statistic and the range coefficient can be derived from the distribution density function of the sample range.Analysis reveals that although the range estimation of the population standard deviation is unbiased, the range estimation of the population variance is biased larger.As the result,the combined standard uncertainty of the measurement result is biased larger.On the other hand, JJF1059.1 only lists the range coefficients for normal distribution,they cannot be applied in all circumstances.As a comparison,whatever the population distribution, the estimation of the population variance based on the Bessel formula is always unbiased, thus will not bring theoretical error into the calculation of the combined standard uncertainty of the measurement result.Since the range method suffering with the principle error in mathematical statistics and the restriction on applicability, it should be prudently used in the type A evaluation of standard uncertainty.
陈凌峰. 标准不确定度A类评定中极差法的深入讨论[J]. 计量学报, 2019, 40(2): 347-352.
CHEN Ling-feng. The Further Discussion of the Range Method in the Type AEvaluation of Sstandard Uncertainty. Acta Metrologica Sinica, 2019, 40(2): 347-352.
[1]国家质量监督检验检疫总局.JJF 1059.1—2012 测量
不确定度评定与表示[S].2012.
[2]ISO/IEC GUIDE 98-3:Uncertainty of measurement-Part 3:Guide to the expression of uncertainty in measurement[S].2008.
[3]国家质量监督检验检疫总局.JJF 1059—1999测量不确定度评定与表示[S].1999.
[4]李慎安. JJF 1059—1999《测量不确定度评定与表示》讨论之三十五 不确定度评定中极差法的应用问题[J].工业计量,2011,21(4):55.
[6]梁之舜. 概率论及数理统计(下册)[M].北京:高等教育出版社,1980.
[7]沙定国.误差分析与测量不确定度评定[M].北京:中国计量出版社,2003.
[8]刘园园,杨健,赵希勇,等.GUM法和MCM法评定测量不确定度对比分析[J].计量学报,2018,39(1):135-139.
Liu Y Y, Yang J, Zhao X Y, et al. Comparative analysis of uncertainty measurement evaluation with GUM and MCM[J]. Acta Metrologica Sinica, 2018,39(1): 135-139.
[9]方兴华,宋明顺,顾龙芳,等.基于自适应蒙特卡罗方法的测量不确定度评定[J].计量学报,2016,37(4):452-456.
Fang X H, Song M S, Gu L F, et al. Application of adaptive Monte Carlo method on measurement uncertainty evaluation[J]. Acta Metrologica Sinica, 2016,37(4):452-456.
[10]王宏涛,王汉斌,陈晓怀,等.测量不确定度引起的批量产品检验误判风险评估[J].计量学报,2017,38(5):559-562.
Wang H T, Wang H B, Chen X H, et al. Evaluation of misjudgment risks caused by measurement uncertainty for batch product inspection[J]. Acta Metrologica Sinica,2017,38(5):559-562.
[11]JCGM 106:Evaluation of measurement data-The role of measurement uncertainty in conformity assessment[S].2012.