Abstract:To solve the problems of large workload whe the fingerprint database is constructed and low positioning accuracy in WLAN indoor positioning system. An indoor positioning algorithm was presented, which integrates kernelized fuzzy C-means(KFCM), low rank matrix completion (LMC) and least squares support vector machine(LSSVM). Firstly, the KFCM is used to cluster the fingerprint points, the test points are sorted into one of the small areas. According to the LMC theory, the low rank fingerprint database into high density fingerprint database was translated. Finally the position of the test points is determined by the LSSVM algorithm. Experiments showed that the KFCM-LMC-LSSVM algorithm not only reduces the workload of building the fingerprint library, but also has higher positioning accuracy.
[1]Ma L, Xu Y. Received Signal Strength Recovery in Green WLAN Indoor Positioning System Using Singular Value Thresholding[J]. Sensors, 2015, 15(1):1292-1311.
[2]Luo J, Zhan X. Characterization of Smart Phone Received Signal Strength Indication for WLAN Indoor Positioning Accuracy Improvement[J]. Journal of Networks, 2014, 9(3):739-746.
[3]Yu F, Jiang M H, Liang J, et al. An improved indoor localization of wifibased on support vector machines[J]. International Journal of Future Generation Communication and Networking, 2014, 7(5): 191-206.
[4]李文浩, 李丽娜, 徐攀峰,等. 基于矩阵填充的室内定位位置指纹库构建[J]. 辽宁大学学报, 2015,42(4):325-329.
[5]Feng C, Au W S A, Valaee S, et al. Received-Signal-Strength-Based Indoor Positioning Using Compressive Sensing[J]. IEEE Transactions on Mobile Computing, 2012, 11(12):1983-1993.
[6]李振宁, 张春, 李永明,等. 基于 Wi-Fi 的室内定位原型机研究与实现[J]. 微电子学与计算机, 2017, 34(1):90-94.
[7]张立国, 任立彬, 金梅, 等. 蚁群循环定位算法在 WSNs 节点定位中的应用[J]. 计量学报, 2015, 36(4): 365-369.
[8]杨慧琳,黄智刚,刘久文,等. 基于核模糊C均值指纹库管理的WIFI室内定位方法[J]. 浙江大学学报(工学版),2016,(6):1126-1133.
[9]Tanner J, Wei K. Normalized iterative hard thresholding for matrix completion[J]. SIAM Journal on Scientific Computing, 2013, 35(5):S104-S125.
[10]杨景明,郭秋辰,孙浩,等. 基于改进果蝇算法与最小二乘支持向量机的轧制力预测算法研究[J]. 计量学报, 2016, 37(5): 505-508.
[11]张立国, 康乐, 金梅, 等. 一种基于 EEMD-SVD 和 FCM 聚类的轴承故障诊断方法[J]. 计量学报, 2015, 37(1): 67-70.
[12]刘汉强,郑朋.局部搜索自适应核模糊聚类方法[J]. 计算机工程与科学,2016,(8):1735-1740.
[13]周密, 宋占杰.基于稀疏与低秩矩阵分解的视频背景建模[J].计算机应用研究,2015,32(10):3175-3178.
[14]姚明海,李洁,王宪保.基于RPCA的太阳能电池片表面缺陷检测[J].计算机学报,2013,36(9):1943-1952.
[15]白鹏,张喜斌,张斌,等. 支持向量机理论及工程应用实例[M]. 西安:西安电子科技大学出版社:2008,13-17.