Abstract:A rolling bearing fault diagnosis method based on local mean decomposition(LMD) of multi-scale fuzzy entropy and grey similar incidence is discussed. In this method, the fault signal is decomposed into several product functions (PF) adaptively, and the multi-scale fuzzy entropies of the PF components covering contain main fault information, which is calculated to get the fault feature vectors. By calculating the grey similar incidence of the sample to be identified and the standard fault pattern, it is realized that the judgement of rolling bearing fault types and damage degree. Compared with the method based on LMD fuzzy entropy and grey similar incidence, the experimental results show that the method based LMD multi-scale fuzzy entropy and grey similar incidence can identify rolling bearing running state efficiently and realize rolling bearing fault diagnosis.
孟宗,赵东方,李晶,熊景鸣,刘爽. 基于局部均值分解多尺度模糊熵和灰色相似关联度的滚动轴承故障诊断[J]. 计量学报, 2018, 39(2): 231-236.
MENG Zong,ZHAO Dong-fang,LI Jing,XIONG Jing-ming,LIU Shuang. Rolling Bearing Fault Diagnosis Based on Local Mean Decomposition Multi-scale Fuzzy Entropy and Grey Similar Incidence. Acta Metrologica Sinica, 2018, 39(2): 231-236.
[1]王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报, 2013, 49(1):88-94.
[3]孟宗, 季艳, 闫晓丽. 基于DEMD和模糊熵的滚动轴承故障诊断方法研究[J]. 计量学报, 2016, 37(1):56-61.
[3]时培明,王敬,温江涛,等. 基于包络线算法改进EMD的旋转机械故障诊断方法研究[J]. 计量学报, 2016, 37(1): 62-66.
[4]杨宇, 李紫珠, 何知义, 等. 基于ASTFA降噪和AKVPMCD的滚动轴承故障诊断方法[J]. 中国机械工程, 2015, 26(21):2934-2940.
[5]谢平, 江国乾, 李兴林, 等. 本征时间尺度排序熵及其在滚动轴承故障诊断中的应用[J]. 燕山大学学报, 2013, 37(2):179-184.
[6]李巧艺, 单奇, 陈跃威. 基于HHT边际谱熵-马氏距离的滚动轴承故障诊断[J]. 燕山大学学报, 2016, 40(6):493-498.
[7]Smith J S. The Local Mean Decomposition And Its Application To EEG Perception Data[J].Journal of the Royal Society Interface, 2005, 2(5):443-454.
[8]孟宗, 李姗姗, 王亚超. 基于LMD和局域时频熵的旋转机械故障诊断方法[J]. 计量学报, 2015, 36(1):77-81.
[9]张立国,康乐,金梅,等. 一种基于EEMD-SVD和FCM的轴承故障诊断方法[J]. 计量学报, 2016, 37(1): 67-70.
[10]孟宗,王晓燕,周明军,等. 基于Gabor变换和盲源分离的旋转机械故障诊断方法[J]. 计量学报, 2016, 37(5): 499-504.
[11]王建国, 吴林峰, 秦绪华. 基于自相关分析和LMD的滚动轴承振动信号故障特征提取[J]. 中国机械工程, 2014, 25(2):186-191.
[12]CHENG J S,YANG Y,YANG Y. A Rotating Machinery Fault Diagnosis Method Based on Local Mean Decompo-sition[J].Digital Signal Processing,2012,22:356-366.
[13]CHEN W T, WANG Z Z, XIE H B, et al. Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE Transactions on Neural System and Rehabilitation Engineering,2007,15(2):266-272.
[14]CHEN W T,ZHUANG J,YU W X,et al.Measuring complexity using FuzzyEn,ApEn,and SampEn[J]. Medical Engineering and Physics, 2009, 31(1):61-68.
[15]郑近德, 陈敏均, 程军圣, 等. 多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 振动工程学报, 2014, 27(1):145-151.
[16]卢绪祥, 苏一鸣, 吴家腾, 等. 基于EMD及灰色关联度的滑动轴承润滑状态故障诊断研究[J].动力工程学报,2016,36(1):42-47.
[17]LI Y P, CHEN M Y,LIU M.Estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis[J].Transactions of Nanjing University of Aeronautics and Astronautics, 2007, 24(3):194-198.
[18]靳春梅, 樊灵, 邱阳, 等. 灰色理论在旋转机械故障诊断与预报中的应用[J]. 应用力学学报, 2000,17(3):74-79.
[19]裴峻峰, 于志远, 董雪, 等. 基于LMD和灰色相似关联度的轴承故障诊断方法[J]. 机械设计与制造, 2015, (4):66-69.
[20]张文斌, 苏艳萍, 普亚松, 等. 基于集合经验模式分解能量分布与灰色相似关联度的齿轮故障诊断[J]. 机械工程学报, 2014, 50(7):70-77.