2025年04月07日 星期一 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2018, Vol. 39 Issue (1): 77-82    DOI: 10.3969/j.issn.1000-1158.2018.01.17
  电磁学计量 本期目录 | 过刊浏览 | 高级检索 |
基于多变量加权一阶局域混沌预测模型优化及应用
张淑清,刘子玥,何泓运,任爽,张立国,姜万录
燕山大学 电气工程学院, 河北 秦皇岛 066004
Optimization and Application of Weighted One-rank Local Chaos Prediction Model Based on Multi-variable
ZHANG Shu-qing,LIU Zi-yue,HE Hong-yun,REN Shuang,ZHANG Li-guo,JIANG Wan-lu
Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
全文: PDF (1486 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 鉴于实际应用中多变量因素对混沌预测的影响,提出了多变量时间序列相空间重构方法,以此为基础建立多变量加权一阶局域混沌预测模型。引入等概率符号化极大联合熵求取延迟时间、最小香农熵法求取嵌入维数,实现多变量混沌预测模型子序列重构;对实际序列采用区间邻近点法确定预测中心点的邻近点,避免产生伪邻近点;最后用关联分析确定观测变量。将该模型应用于短期电力负荷预测,分析气温等影响因素与电力负荷的相关程度,引入气温时间序列作为另一观测变量,实验证明相对于单变量预测方法提高了预测精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张淑清
刘子玥
何泓运
任爽
张立国
姜万录
关键词 计量学短期电力负荷预测加权一阶局域法混沌预测模型优化等概率符号化极大联合熵;香农熵多变量预测    
Abstract:In view of the influence of multi-variable on the chaotic prediction in practical application, a method for phase space reconstruction of multivariate time series is proposed, and a weighted one-rank local chaos forecasting model on multi-variable was established. The equal probability-based maximum joint entropy and the minimum Shannon entropy are introduced to get the delay time and the embedding dimension respectively, realizing the sub-sequence reconstruction to the chaotic prediction model. The nearest neighbor point method is used to determine the neighborhood of the prediction center to avoid false neighbors, and the correlation analysis is used to determine the observed variables. The model was applied to short-term load forecasting, and the temperature time series was introduced as another observation variable by the analysis of the impact of temperature and other factors related to electric load. The experimental results showed that the prediction accuracy was improved compared with the single variable forecasting method.
Key wordsmetrology    short-term load forecasting    weighted one-rank local region method    chaos prediction    model optimization    equal probability symbolization    maximum joint entropy    Shannon entropy    correlation analysismultivariable prediction
收稿日期: 2015-12-30      发布日期: 2017-12-29
PACS:  TB971  
基金资助:国家自然科学基金(61077071,51475405);河北省自然科学基金(F2016203496,F2015203413,F2015203392);河北省高层次人才项目(A2016002032)
通讯作者: 张淑清     E-mail: zhshq-yd@163.com
作者简介: 张淑清(1966-),女,河北秦皇岛人,燕山大学教授,博士,主要研究方向为弱信号检测、智能信号处理和故障诊断等。zhshq-yd@163.com
引用本文:   
张淑清,刘子玥,何泓运,任爽,张立国,姜万录. 基于多变量加权一阶局域混沌预测模型优化及应用[J]. 计量学报, 2018, 39(1): 77-82.
ZHANG Shu-qing,LIU Zi-yue,HE Hong-yun,REN Shuang,ZHANG Li-guo,JIANG Wan-lu. Optimization and Application of Weighted One-rank Local Chaos Prediction Model Based on Multi-variable. Acta Metrologica Sinica, 2018, 39(1): 77-82.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2018.01.17     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2018/V39/I1/77
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn