A Signal Feature Extraction Method and Its Application Based on EEMD Fuzzy Entropy and GK Clustering
JIN Mei1,LI Pan1,ZHANG Li-guo1,JIN Ju2,ZHANG Shu-qing1
1.Measurement Technology and Instrumentation Key lab of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China;
2.School of Civil Engineering, Hebei University of Technology, Tianjin 300401, China
Abstract:A method of feature extraction combining ensemble empirical mode decomposition with fuzzy entropy, and Gustafaon-Kessel clustering to the rolling bearing fault diagnosis . is introduced.Firstly, rolling bearing vibration signal is decomposed into a series of IMFs.Secondly, IMFs are chosen by the criteria of correlation, and the fuzzy entropies of the chosen IMF component compose eigenvectors. Finally, the constructed eigenvectors are put into GK classifier to recognize different fault types. Experiments show that fuzzy entropy can characterize the feature information of the fault signal better than sample entropy and approximate entropy do, and the result of GK clustering is superior to FCM’s. So, experimental results show that the rolling bearing fault diagnosis method based on EEMD fuzzy entropy and GK clustering is effective and superiority.
金梅,李盼,张立国,金菊,张淑清. 基于EEMD模糊熵和GK聚类的信号特征提取方法及应用[J]. 计量学报, 2015, 36(5): 501-505.
JIN Mei,LI Pan,ZHANG Li-guo,JIN Ju,ZHANG Shu-qing. A Signal Feature Extraction Method and Its Application Based on EEMD Fuzzy Entropy and GK Clustering. Acta Metrologica Sinica, 2015, 36(5): 501-505.
[1]张淑清, 董璇, 翟欣沛, 等. 基于EEMD和混沌的信号特征提取方法及应用[J].计量学报,2013,34(2):173-179.
[2]崔春英, 段礼祥, 张来斌. 基于LMD和FCM滚动轴承故障诊断方法[J].科学技术与工程,2013,13 (6):1764-1772.
[3]孔丁科, 汪国昭. 基于EMD的快速活动轮廓图像分割算法[J].电子与信息学报, 2010, 32(5): 1094-1099.
[4]王书涛, 张金梅, 李圆圆. 基于数学形态学和模糊聚类的旋转机械故障诊断[J].仪器仪表学报,2012,33 (5):1056-1060.
[5]Ge G X, Jing Q, Luo Y H. A computational investigation of boron-doped chromium and chromium clusters by density functional theory[J].Science China(Physics,Mechanics & Astronomy), 2010,53(5): 812-817.
[6]Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A, 1998, 454(1971): 903-995.
[7]王宏, Narayanan R M, 周正欧, 等.基于改进EEMD的穿墙雷达动目标微多普勒特性分析[J]. 电子与信息学报, 2010,32(6):1355-1360.
[8]陈龙,郭宝龙,孙伟.基于FCM聚类的粒子滤波多目标跟踪算法[J],仪器仪表学报,2011, 32 (11):2536-2542.
[9]蔡威, 程俊杰.基于减法聚类的GK模糊聚类研究[J].兰州交通大学学报,2011,30(6) :50-54.
[10]刘慧, 谢洪波, 和卫星.基于模糊熵的脑电睡眠分期特征提取与分类[J].数据采集与处理, 2010,25(4) :485-489.
[11]Chen W T, Wang Z H, Xie H B. Characterization of surface EMG signal based on fuzzy entropy[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2) :267-272.
[12]张文斌, 郭德伟, 普亚松.谐波窗分解样本熵与灰色关联度在转子故障识别中的应用[J].中国电机工程学报, 2013, 33(21): 132-137.
[13]袁琦, 周卫东, 李淑芳. 基于ELM和近似熵的脑电信号检测方法[J].仪器仪表学报, 2012, 33(3): 514-519.