Abstract:A method of weak features detection for mechanical fault data is proposed, which combined the stochastic resonance and the improved Shannon entropy of symbolic series. Firstly, the basic principles of SR and symbolic sequence analysis (SSA) is briefly introduced. Secondly, symbolic sequence Shannon entropy of output signal is the measure whether the state of this system of SR is the best one. Finally, according to adjust system parameters a and b adaptively, the system of SR achieves the best state and analyzes signal to noise ratio (SNR) and spectrum of output signal. Information of output signal show that Shannon entropy of symbolic series can reflect the state of SR , the best SNR of output signal can be achieved and it can be easily used in practical projects, which confirms the new method proposed is correct and useful.
潘峥嵘,谯自健,张宁. 基于符号序列熵的自适应随机共振的微弱信号检测[J]. 计量学报, 2015, 36(5): 496-500.
PAN Zheng-rong,QIAO Zi-jian,ZHANG Ning. Weak Signal Detection of Adaptive Stochastic Resonance Based on Shannon Entropy of Symbolic Series. Acta Metrologica Sinica, 2015, 36(5): 496-500.
[1]谢平,杨玉昕,江国乾,等.基于局部均值分解的滚动轴承故障诊断新方法[J].计量学报,2014,35(1):73-77.
[2]Dong H B, Qi K Y , Chen X F, et al. Sifting process of EMD and its application in rolling element bearing fault diagnosis[J].Journal of Mechanical Science and Technology,2009,23(8):2000-2007.
[3]杨江天,陈家骥,曾子平.基于高阶谱的旋转机械故障征兆提取[J].振动工程学报,2001,14(1):14-17.
[4]刘雪霞,张琦,谭业发.高阶谱分析技术在轴承故障信号特征提取中的应用[J].机床与液压,2008,36(7): 155-160.
[5]臧怀刚,李清志,韩艳龙,等.基于改进的经验模态分解的滚动轴承故障诊断研究[J].计量学报,2013,34(2):101-105.
[6]苏理云,马洪,唐世福.用混沌振子和Kalman滤波检测强分形噪声中的弱信号[J].四川大学学报(工程科学版),2007,39(3): 149-154.
[7]Benzi R,Sutera A,Vulpiani A.The mechanism of stochastic resonance[J]. Journal of Physics A:Mathematical and General,1981,14(11):453-457.
[8]Benzi R, Parisi G, Sutera A, et al. A theory of stoch-astic resonance in climatic change[J].SIAM Journal on Applied Mathematics,1983,43(3):565-578.
[9]王清亮.基于符号序列信息熵混沌特性的微弱信号检测[J].仪器仪表学报,2009,30(12):2491-2497.
[10]张爱华,王平,丑永新.基于动态差分阈值的脉搏信号峰值检测算法[J].吉林大学学报(工学版), 2014,44(3):.847-853.
[11]Case Western Reserve University Bearing Data Center Website[EB/OL]. http://www.eecs.case.edu/laboratory/bearing/download_fan.htm
[12]陈敏,胡茑庆,秦国军,等.参数调节随机共振在机械系统故障早期检测中的应用[J].机械工程学报,2009,45(4):131-135.